Design of a dual-hormone model predictive control for artificial pancreas with exercise model

Navid Resalat, Joseph El Youssef, Ravi Reddy, Peter G. Jacobs

Research output: Chapter in Book/Report/Conference proceedingConference contribution

8 Scopus citations

Abstract

The Artificial Pancreas (AP) is a new technology for helping people with type 1 diabetes to better control their glucose levels through automated delivery of insulin and optionally glucagon in response to sensed glucose levels. In a dual hormone AP, insulin and glucagon are delivered automatically to the body based on glucose sensor measurements using a control algorithm that calculates the amount of hormones to be infused. A dual-hormone MPC may deliver insulin continuously; however, it must avoid continuous delivery of glucagon because nausea can occur from too much glucagon. In this paper, we propose a novel dual-hormone (DH) switching model predictive control and compare it with a single-hormone (SH) MPC. We extended both MPCs by integrating an exercise model and compared performance with and without the exercise model included. Results were obtained on a virtual patient population undergoing a simulated exercise event using a mathematical glucoregulatory model that includes exercise. Time spent in hypoglycemia is significantly less with the DH-MPC than the SH-MPC (p=0.0022). Additionally, including the exercise model in the DH-MPC can help prevent hypoglycemia (p < 0.001).

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2270-2273
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Design of a dual-hormone model predictive control for artificial pancreas with exercise model'. Together they form a unique fingerprint.

  • Cite this

    Resalat, N., Youssef, J. E., Reddy, R., & Jacobs, P. G. (2016). Design of a dual-hormone model predictive control for artificial pancreas with exercise model. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 (pp. 2270-2273). [7591182] (Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS; Vol. 2016-October). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/EMBC.2016.7591182