Abstract
Cell cycle progression delays and subsequent growth kinetics of viable and nonviable Chinese hamster cells following acute (45.5°) hyperthermia were documented in an attempt to correlate these changes with the decay of thermal tolerance. Following heating for various lengths of time, cells exhibited a delay in subsequent division which was related to cell survival by a power function relationship. A cell was considered to be viable if it retained the ability to divide to form a colony of 50 or more cells. The components of the delay in cycle transit for viable cells heated in G1 for a treatment of 20 min at 45.5° were approximately 28 hr in G1 and 20 hr in S and G2-M. This represents a 7-fold decrease in the rate progression through G1 and a 2-fold decrease through S and G2-M relative to control rates. The doubling times of viable cells, in subsequent generations, were significantly decreased to a rate 61% of that of control up to 120 hr after heating. This reduction was in part due to lethal sectoring, i.e., a division which produces only one daughter that is capable of forming a viable subclone, within the viable progeny. Within a viable subclone, up to 30% of the cells that divided from 48 to 91 hr after a heat treatment of 20 min at 45.5° were found to be nonclonogenic. Following resumption of division, nonviable cells slowly lost their capacity for proliferation. Nearly all thermal tolerance development induced by a 20-min pretreatment occurred while the viable cells remained in G1 Subsequent progression into heat-sensitive S and G2-M phases modulated thermal tolerance only slightly. Finally, maximal loss of thermal tolerance was exhibited at the time corresponding to the resumption of viable cell division.
Original language | English (US) |
---|---|
Pages (from-to) | 1802-1808 |
Number of pages | 7 |
Journal | Cancer Research |
Volume | 44 |
Issue number | 5 |
State | Published - May 1 1984 |
Externally published | Yes |
ASJC Scopus subject areas
- Oncology
- Cancer Research