Abstract
Pancreatic ductal adenocarcinoma (PDA) is the third leading cause of cancer-related deaths in the United States, whereas colorectal cancer is the third most common cancer. The RNAbinding protein HuR (ELAVL1) supports a pro-oncogenic network in gastrointestinal (GI) cancer cells through enhanced HuR expression. Using a publically available database, HuR expression levels were determined to be increased in primary PDA and colorectal cancer tumor cohorts as compared with normal pancreas and colon tissues, respectively. CRISPR/Cas9 technology was successfully used to delete the HuR gene in both PDA (MIA PaCa-2 and Hs 766T) and colorectal cancer (HCT116) cell lines. HuR deficiency has a mild phenotype, in vitro, as HuR-deficient MIA PaCa-2 (MIA.HuR-KO(-/-)) cells had increased apoptosis when compared with isogenic wildtype (MIA.HuR-WT(+/+)) cells. Using this isogenic system, mRNAs were identified that specifically bound to HuR and were required for transforming a two-dimensional culture into three dimensional (i.e., organoids). Importantly, HuR-deficient MIA PaCa-2 and Hs 766T cells were unable to engraft tumors in vivo compared with control HuR-proficient cells, demonstrating a unique xenograft lethal phenotype. Although not as a dramatic phenotype, CRISPR knockout HuR HCT116 colon cancer cells (HCT.HuR-KO(-/-)) showed significantly reduced in vivo tumor growth compared with controls (HCT.HuR-WT(+/+)). Finally, HuR deletion affects KRAS activity and controls a subset of pro-oncogenic genes. Implications: The work reported here supports the notion that targeting HuR is a promising therapeutic strategy to treat GI malignancies.
Original language | English (US) |
---|---|
Pages (from-to) | 696-707 |
Number of pages | 12 |
Journal | Molecular Cancer Research |
Volume | 15 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2017 |
Externally published | Yes |
ASJC Scopus subject areas
- Molecular Biology
- Oncology
- Cancer Research