Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus

M. Cerri, Shaun Morrison

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

Corticotropin releasing factor, acting at hypothalamic corticotropin releasing factor receptors, contributes to the neural signaling pathways mediating stress-related responses, as well as those involved in maintaining energy balance homeostasis. Sympathetically-regulated lipid metabolism and heat production in brown adipose tissue contributes to the non-shivering thermogenic component of stress-evoked hyperthermia and to energy expenditure aspects of body weight regulation. To identify potential central pathways through which hypothalamic corticotropin releasing factor influences brown adipose tissue thermogenesis, corticotropin releasing factor was microinjected into the lateral ventricle (i.c.v.) or into hypothalamic sites while recording sympathetic outflow to brown adipose tissue, brown adipose tissue temperature, expired CO2, heart rate and arterial pressure in urethane/chloralose-anesthetized, artificially-ventilated rats. I.c.v. corticotropin releasing factor or corticotropin releasing factor microinjection into the preoptic area or the dorsomedial hypothalamus, but not the paraventricular nucleus of the hypothalamus, elicited sustained increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature, expired CO2 and heart rate. These sympathetic responses to i.c.v. corticotropin releasing factor were eliminated by inhibition of neuronal activity in the dorsomedial hypothalamus or in the raphe pallidus, a putative site of sympathetic premotor neurons for brown adipose tissue, and were markedly reduced by microinjection of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamus. The increases in brown adipose tissue sympathetic outflow, brown adipose tissue temperature and heart rate elicited from corticotropin releasing factor into the preoptic area were reversed by inhibition of neuronal discharge in dorsomedial hypothalamus. These data indicate that corticotropin releasing factor release within the preoptic area activates a sympathoexcitatory pathway to brown adipose tissue and to the heart, perhaps similar to that activated by increased prostaglandin production in the preoptic area, that includes neurons in the dorsomedial hypothalamus and in the raphe pallidus.

Original languageEnglish (US)
Pages (from-to)711-721
Number of pages11
JournalNeuroscience
Volume140
Issue number2
DOIs
StatePublished - 2006

Fingerprint

Brown Adipose Tissue
Thermogenesis
Corticotropin-Releasing Hormone
Hypothalamus
Heart Rate
Preoptic Area
Pituitary Hormone-Releasing Hormones
Microinjections
Temperature
Corticotropin-Releasing Hormone Receptors
Ionotropic Glutamate Receptors
Neurons
Neural Pathways
Excitatory Amino Acid Antagonists
Chloralose
Paraventricular Hypothalamic Nucleus
Lateral Ventricles
Urethane
Lipid Metabolism
Energy Metabolism

Keywords

  • energy balance
  • hyperthermia
  • stress
  • sympathetic nerve activity

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{ef7731686f924b20bf60a3a1527d6be2,
title = "Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus",
abstract = "Corticotropin releasing factor, acting at hypothalamic corticotropin releasing factor receptors, contributes to the neural signaling pathways mediating stress-related responses, as well as those involved in maintaining energy balance homeostasis. Sympathetically-regulated lipid metabolism and heat production in brown adipose tissue contributes to the non-shivering thermogenic component of stress-evoked hyperthermia and to energy expenditure aspects of body weight regulation. To identify potential central pathways through which hypothalamic corticotropin releasing factor influences brown adipose tissue thermogenesis, corticotropin releasing factor was microinjected into the lateral ventricle (i.c.v.) or into hypothalamic sites while recording sympathetic outflow to brown adipose tissue, brown adipose tissue temperature, expired CO2, heart rate and arterial pressure in urethane/chloralose-anesthetized, artificially-ventilated rats. I.c.v. corticotropin releasing factor or corticotropin releasing factor microinjection into the preoptic area or the dorsomedial hypothalamus, but not the paraventricular nucleus of the hypothalamus, elicited sustained increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature, expired CO2 and heart rate. These sympathetic responses to i.c.v. corticotropin releasing factor were eliminated by inhibition of neuronal activity in the dorsomedial hypothalamus or in the raphe pallidus, a putative site of sympathetic premotor neurons for brown adipose tissue, and were markedly reduced by microinjection of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamus. The increases in brown adipose tissue sympathetic outflow, brown adipose tissue temperature and heart rate elicited from corticotropin releasing factor into the preoptic area were reversed by inhibition of neuronal discharge in dorsomedial hypothalamus. These data indicate that corticotropin releasing factor release within the preoptic area activates a sympathoexcitatory pathway to brown adipose tissue and to the heart, perhaps similar to that activated by increased prostaglandin production in the preoptic area, that includes neurons in the dorsomedial hypothalamus and in the raphe pallidus.",
keywords = "energy balance, hyperthermia, stress, sympathetic nerve activity",
author = "M. Cerri and Shaun Morrison",
year = "2006",
doi = "10.1016/j.neuroscience.2006.02.027",
language = "English (US)",
volume = "140",
pages = "711--721",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "2",

}

TY - JOUR

T1 - Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus

AU - Cerri, M.

AU - Morrison, Shaun

PY - 2006

Y1 - 2006

N2 - Corticotropin releasing factor, acting at hypothalamic corticotropin releasing factor receptors, contributes to the neural signaling pathways mediating stress-related responses, as well as those involved in maintaining energy balance homeostasis. Sympathetically-regulated lipid metabolism and heat production in brown adipose tissue contributes to the non-shivering thermogenic component of stress-evoked hyperthermia and to energy expenditure aspects of body weight regulation. To identify potential central pathways through which hypothalamic corticotropin releasing factor influences brown adipose tissue thermogenesis, corticotropin releasing factor was microinjected into the lateral ventricle (i.c.v.) or into hypothalamic sites while recording sympathetic outflow to brown adipose tissue, brown adipose tissue temperature, expired CO2, heart rate and arterial pressure in urethane/chloralose-anesthetized, artificially-ventilated rats. I.c.v. corticotropin releasing factor or corticotropin releasing factor microinjection into the preoptic area or the dorsomedial hypothalamus, but not the paraventricular nucleus of the hypothalamus, elicited sustained increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature, expired CO2 and heart rate. These sympathetic responses to i.c.v. corticotropin releasing factor were eliminated by inhibition of neuronal activity in the dorsomedial hypothalamus or in the raphe pallidus, a putative site of sympathetic premotor neurons for brown adipose tissue, and were markedly reduced by microinjection of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamus. The increases in brown adipose tissue sympathetic outflow, brown adipose tissue temperature and heart rate elicited from corticotropin releasing factor into the preoptic area were reversed by inhibition of neuronal discharge in dorsomedial hypothalamus. These data indicate that corticotropin releasing factor release within the preoptic area activates a sympathoexcitatory pathway to brown adipose tissue and to the heart, perhaps similar to that activated by increased prostaglandin production in the preoptic area, that includes neurons in the dorsomedial hypothalamus and in the raphe pallidus.

AB - Corticotropin releasing factor, acting at hypothalamic corticotropin releasing factor receptors, contributes to the neural signaling pathways mediating stress-related responses, as well as those involved in maintaining energy balance homeostasis. Sympathetically-regulated lipid metabolism and heat production in brown adipose tissue contributes to the non-shivering thermogenic component of stress-evoked hyperthermia and to energy expenditure aspects of body weight regulation. To identify potential central pathways through which hypothalamic corticotropin releasing factor influences brown adipose tissue thermogenesis, corticotropin releasing factor was microinjected into the lateral ventricle (i.c.v.) or into hypothalamic sites while recording sympathetic outflow to brown adipose tissue, brown adipose tissue temperature, expired CO2, heart rate and arterial pressure in urethane/chloralose-anesthetized, artificially-ventilated rats. I.c.v. corticotropin releasing factor or corticotropin releasing factor microinjection into the preoptic area or the dorsomedial hypothalamus, but not the paraventricular nucleus of the hypothalamus, elicited sustained increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature, expired CO2 and heart rate. These sympathetic responses to i.c.v. corticotropin releasing factor were eliminated by inhibition of neuronal activity in the dorsomedial hypothalamus or in the raphe pallidus, a putative site of sympathetic premotor neurons for brown adipose tissue, and were markedly reduced by microinjection of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamus. The increases in brown adipose tissue sympathetic outflow, brown adipose tissue temperature and heart rate elicited from corticotropin releasing factor into the preoptic area were reversed by inhibition of neuronal discharge in dorsomedial hypothalamus. These data indicate that corticotropin releasing factor release within the preoptic area activates a sympathoexcitatory pathway to brown adipose tissue and to the heart, perhaps similar to that activated by increased prostaglandin production in the preoptic area, that includes neurons in the dorsomedial hypothalamus and in the raphe pallidus.

KW - energy balance

KW - hyperthermia

KW - stress

KW - sympathetic nerve activity

UR - http://www.scopus.com/inward/record.url?scp=33747451335&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33747451335&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2006.02.027

DO - 10.1016/j.neuroscience.2006.02.027

M3 - Article

C2 - 16580142

AN - SCOPUS:33747451335

VL - 140

SP - 711

EP - 721

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 2

ER -