Convolutional Neural Network Approach to Classify Skin Lesions Using Reflectance Confocal Microscopy

Marek Wodzinski, Andrzej Skalski, Alexander Witkowski, Giovanni Pellacani, Joanna Ludzik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

We propose an approach based on a convolutional neural network to classify skin lesions using the reflectance confocal microscopy (RCM) mosaics. Skin cancers are the most common type of cancers and a correct, early diagnosis significantly lowers both morbidity and mortality. RCM is an in-vivo non-invasive screening tool that produces virtual biopsies of skin lesions but its proficient and safe use requires hard to obtain expertise. Therefore, it may be useful to have an additional tool to aid diagnosis. The proposed network is based on the ResNet architecture. The dataset consists of 429 RCM mosaics and is divided into 3 classes: melanoma, basal cell carcinoma, and benign naevi with the ground-truth confirmed by a histopathological examination. The test set classification accuracy was 87%, higher than the accuracy achieved by medical, confocal users. The results show that the proposed classification system can be a useful tool to aid in early, noninvasive melanoma detection.

Original languageEnglish (US)
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4754-4757
Number of pages4
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Externally publishedYes
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period7/23/197/27/19

Keywords

  • convolutional neural network
  • deep learning
  • melanoma
  • reflectance confocal microscopy
  • skin lesion

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Convolutional Neural Network Approach to Classify Skin Lesions Using Reflectance Confocal Microscopy'. Together they form a unique fingerprint.

Cite this