Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

Maria W. Smith, Lisa Zeigler Allen, Andrew E. Allen, Lydie Herfort, Holly Simon

Research output: Contribution to journalArticle

59 Citations (Scopus)

Abstract

The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3- 200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.

Original languageEnglish (US)
JournalFrontiers in Microbiology
Volume4
Issue numberMAY
DOIs
StatePublished - 2013

Fingerprint

Metagenome
Ecosystem
Rivers
Oceans and Seas
Water
Peptides
Northwestern United States
Bacteria
Diatoms
Estuaries
Archaea
Chlorophyll
Eukaryota
Ammonia
Economics
Oxygen

Keywords

  • Columbia River coastal margin
  • Environmental water
  • Metagenome analysis
  • Microbial communities
  • Particle-attached and free-living microbes

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)

Cite this

Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. / Smith, Maria W.; Allen, Lisa Zeigler; Allen, Andrew E.; Herfort, Lydie; Simon, Holly.

In: Frontiers in Microbiology, Vol. 4, No. MAY, 2013.

Research output: Contribution to journalArticle

Smith, Maria W. ; Allen, Lisa Zeigler ; Allen, Andrew E. ; Herfort, Lydie ; Simon, Holly. / Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. In: Frontiers in Microbiology. 2013 ; Vol. 4, No. MAY.
@article{328d714389204083983096885bde1bd3,
title = "Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem",
abstract = "The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3- 200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19{\%} of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40{\%} of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.",
keywords = "Columbia River coastal margin, Environmental water, Metagenome analysis, Microbial communities, Particle-attached and free-living microbes",
author = "Smith, {Maria W.} and Allen, {Lisa Zeigler} and Allen, {Andrew E.} and Lydie Herfort and Holly Simon",
year = "2013",
doi = "10.3389/fmicb.2013.00120",
language = "English (US)",
volume = "4",
journal = "Frontiers in Microbiology",
issn = "1664-302X",
publisher = "Frontiers Media S. A.",
number = "MAY",

}

TY - JOUR

T1 - Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem

AU - Smith, Maria W.

AU - Allen, Lisa Zeigler

AU - Allen, Andrew E.

AU - Herfort, Lydie

AU - Simon, Holly

PY - 2013

Y1 - 2013

N2 - The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3- 200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.

AB - The Columbia River (CR) is a powerful economic and environmental driver in the US Pacific Northwest. Microbial communities in the water column were analyzed from four diverse habitats: (1) an estuarine turbidity maximum (ETM), (2) a chlorophyll maximum of the river plume, (3) an upwelling-associated hypoxic zone, and (4) the deep ocean bottom. Three size fractions, 0.1-0.8, 0.8-3, and 3- 200 μm were collected for each habitat in August 2007, and used for DNA isolation and 454 sequencing, resulting in 12 metagenomes of >5 million reads (>1.6 Gbp). To characterize the dominant microorganisms and metabolisms contributing to coastal biogeochemistry, we used predicted peptide and rRNA data. The 3- and 0.8-μm metagenomes, representing particulate fractions, were taxonomically diverse across habitats. The 3-μm size fractions contained a high abundance of eukaryota with diatoms dominating the hypoxic water and plume, while cryptophytes were more abundant in the ETM. The 0.1-μm metagenomes represented mainly free-living bacteria and archaea. The most abundant archaeal hits were observed in the deep ocean and hypoxic water (19% of prokaryotic peptides in the 0.1-μm metagenomes), and were homologous to Nitrosopumilus maritimus (ammonia-oxidizing Thaumarchaeota). Bacteria dominated metagenomes of all samples. In the euphotic zone (estuary, plume and hypoxic ocean), the most abundant bacterial taxa (≥40% of prokaryotic peptides) represented aerobic photoheterotrophs. In contrast, the low-oxygen, deep water metagenome was enriched with sequences for strict and facultative anaerobes. Interestingly, many of the same anaerobic bacterial families were enriched in the 3-μm size fraction of the ETM (2-10X more abundant relative to the 0.1-μm metagenome), indicating possible formation of anoxic microniches within particles. Results from this study provide a metagenome perspective on ecosystem-scale metabolism in an upwelling-influenced river-dominated coastal margin.

KW - Columbia River coastal margin

KW - Environmental water

KW - Metagenome analysis

KW - Microbial communities

KW - Particle-attached and free-living microbes

UR - http://www.scopus.com/inward/record.url?scp=84884227995&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84884227995&partnerID=8YFLogxK

U2 - 10.3389/fmicb.2013.00120

DO - 10.3389/fmicb.2013.00120

M3 - Article

C2 - 23750156

AN - SCOPUS:84884227995

VL - 4

JO - Frontiers in Microbiology

JF - Frontiers in Microbiology

SN - 1664-302X

IS - MAY

ER -