@article{d566260cb9814132b01efa78f1f67661,
title = "COMPASS: A computational model to predict changes in MMSE scores 24-months after initial assessment of Alzheimer's disease",
abstract = "We present COMPASS, a COmputational Model to Predict the development of Alzheimer's diSease Spectrum, to model Alzheimer's disease (AD) progression. This was the best-performing method in recent crowdsourcing benchmark study, DREAM Alzheimer's Disease Big Data challenge to predict changes in Mini-Mental State Examination (MMSE) scores over 24-months using standardized data. In the present study, we conducted three additional analyses beyond the DREAM challenge question to improve the clinical contribution of our approach, including: (1) adding pre-validated baseline cognitive composite scores of ADNI-MEM and ADNI-EF, (2) identifying subjects with significant declines in MMSE scores, and (3) incorporating SNPs of top 10 genes connected to APOE identified from functional-relationship network. For (1) above, we significantly improved predictive accuracy, especially for the Mild Cognitive Impairment (MCI) group. For (2), we achieved an area under ROC of 0.814 in predicting significant MMSE decline: our model has 100% precision at 5% recall, and 91% accuracy at 10% recall. For (3), {"}genetic only{"} model has Pearson's correlation of 0.15 to predict progression in the MCI group. Even though addition of this limited genetic model to COMPASS did not improve prediction of progression of MCI group, the predictive ability of SNP information extended beyond well-known APOE allele.",
author = "Fan Zhu and Bharat Panwar and Dodge, {Hiroko H.} and Hongdong Li and Hampstead, {Benjamin M.} and Albin, {Roger L.} and Paulson, {Henry L.} and Yuanfang Guan",
note = "Funding Information: This work is supported by NSF 1452656, Alzheimer's Foundation (BAND-15-367116), and Michigan Alzheimer's Disease Core Center (P30AG053760). Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Publisher Copyright: {\textcopyright} The Author(s) 2016.",
year = "2016",
month = oct,
day = "5",
doi = "10.1038/srep34567",
language = "English (US)",
volume = "6",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
}