TY - JOUR
T1 - Combined CTLA-4 and PD-L1 blockade in patients with chemotherapy-naïve metastatic castration-resistant prostate cancer is associated with increased myeloid and neutrophil immune subsets in the bone microenvironment
AU - Subudhi, Sumit K.
AU - Siddiqui, Bilal A.
AU - Aparicio, Ana M.
AU - Yadav, Shalini S.
AU - Basu, Sreyashi
AU - Chen, Hong
AU - Jindal, Sonali
AU - Tidwell, Rebecca S.S.
AU - Varma, Ashwin
AU - Logothetis, Christopher J.
AU - Allison, James P.
AU - Corn, Paul G.
AU - Sharma, Padmanee
N1 - Funding Information:
Funding These studies were supported in part by MedImmune/AstraZeneca. The research work was also supported by The University of Texas MD Anderson Cancer Center Prostate Cancer Moon Shot Program; The V Foundation for Cancer Research’s Lloyd Family Clinical Oncology Scholar Award D2018-014 (to SKS); NIH Training Grant T32 CA009666 (BAS); and NIH/NCI Award P30CA016672. The Genitourinary Cancers Program of the Cancer Center support grant shared resources at The University of Texas M.D. Anderson Cancer Center. JPA and PS are members of the Parker Institute for Cancer Immunotherapy at The University of Texas M.D. Anderson Cancer Center.
Publisher Copyright:
© 2021 Author(s). Published by BMJ.
PY - 2021/10/18
Y1 - 2021/10/18
N2 - Background Immune checkpoint therapy (ICT) has low response rates in patients with metastatic castration-resistant prostate cancer (mCRPC), in part due to few T cells in the tumor microenvironment (TME). Anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) promotes intratumoral T cell infiltration but induces upregulation of PD-1 and programmed death ligand-1 (PD-L1) within the prostate TME. Combined anti-CTLA-4 plus anti-PD-1 can partly overcome this adaptive resistance and was recently shown to augment responses in patients with mCRPC with measurable disease. Although bone is the most common site of metastasis in prostate cancer, patients with bone-predominant disease are frequently excluded from trials because they lack measurable disease, which limits assessment of disease progression and tissue sampling. We therefore designed this study to investigate combined ICT in mCRPC to bone. Hypothesis Combined anti-CTLA-4 (tremelimumab) plus anti-PD-L1 (durvalumab) is safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone. Patients and methods In this single-arm pilot study, men with chemotherapy-naïve mCRPC to bone received tremelimumab (75 mg intravenous) plus durvalumab (1500 mg intravenous) every 4 weeks (up to four doses), followed by durvalumab (1500 mg intravenous) maintenance every 4 weeks (up to nine doses). The primary endpoint was incidence of adverse events. Secondary endpoints included serum prostate-specific antigen (PSA), progression-free survival (PFS), radiographic PFS (rPFS), and maximal PSA decline. Results Twenty-six patients were treated between August 8, 2017 and March 28, 2019. Grade ≥3 treatment-related adverse events (TRAEs) occurred in 11 patients (42%), with no grade 4 or 5 events. TRAEs leading to discontinuation occurred in three patients (12%). PSA decline ≥50% occurred in three patients (12%). Six patients (24%) achieved stable disease for >6 months. At a median follow-up of 43.6 months, median rPFS was 3.7 months (95% CI: 1.9 to 5.7), and median overall survival was 28.1 months (95% CI: 14.5 to 37.3). Post-treatment evaluation of the bone microenvironment revealed transcriptional upregulation in myeloid and neutrophil immune subset signatures and increased expression of inhibitory immune checkpoints. Conclusions Tremelimumab plus durvalumab was safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone, with potential activity in a small number of patients as measured by rPFS. Combination of CTLA-4 and PD-L1 blockade with therapies targeting the myeloid compartment or other inhibitory immune receptors may be necessary to overcome mechanisms of resistance within prostate bone microenvironment. Trial registration number NCT03204812.
AB - Background Immune checkpoint therapy (ICT) has low response rates in patients with metastatic castration-resistant prostate cancer (mCRPC), in part due to few T cells in the tumor microenvironment (TME). Anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) promotes intratumoral T cell infiltration but induces upregulation of PD-1 and programmed death ligand-1 (PD-L1) within the prostate TME. Combined anti-CTLA-4 plus anti-PD-1 can partly overcome this adaptive resistance and was recently shown to augment responses in patients with mCRPC with measurable disease. Although bone is the most common site of metastasis in prostate cancer, patients with bone-predominant disease are frequently excluded from trials because they lack measurable disease, which limits assessment of disease progression and tissue sampling. We therefore designed this study to investigate combined ICT in mCRPC to bone. Hypothesis Combined anti-CTLA-4 (tremelimumab) plus anti-PD-L1 (durvalumab) is safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone. Patients and methods In this single-arm pilot study, men with chemotherapy-naïve mCRPC to bone received tremelimumab (75 mg intravenous) plus durvalumab (1500 mg intravenous) every 4 weeks (up to four doses), followed by durvalumab (1500 mg intravenous) maintenance every 4 weeks (up to nine doses). The primary endpoint was incidence of adverse events. Secondary endpoints included serum prostate-specific antigen (PSA), progression-free survival (PFS), radiographic PFS (rPFS), and maximal PSA decline. Results Twenty-six patients were treated between August 8, 2017 and March 28, 2019. Grade ≥3 treatment-related adverse events (TRAEs) occurred in 11 patients (42%), with no grade 4 or 5 events. TRAEs leading to discontinuation occurred in three patients (12%). PSA decline ≥50% occurred in three patients (12%). Six patients (24%) achieved stable disease for >6 months. At a median follow-up of 43.6 months, median rPFS was 3.7 months (95% CI: 1.9 to 5.7), and median overall survival was 28.1 months (95% CI: 14.5 to 37.3). Post-treatment evaluation of the bone microenvironment revealed transcriptional upregulation in myeloid and neutrophil immune subset signatures and increased expression of inhibitory immune checkpoints. Conclusions Tremelimumab plus durvalumab was safe and well tolerated in patients with chemotherapy-naïve mCRPC to bone, with potential activity in a small number of patients as measured by rPFS. Combination of CTLA-4 and PD-L1 blockade with therapies targeting the myeloid compartment or other inhibitory immune receptors may be necessary to overcome mechanisms of resistance within prostate bone microenvironment. Trial registration number NCT03204812.
KW - immunotherapy
KW - prostatic neoplasms
KW - tumor microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85117692117&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117692117&partnerID=8YFLogxK
U2 - 10.1136/jitc-2021-002919
DO - 10.1136/jitc-2021-002919
M3 - Article
C2 - 34663638
AN - SCOPUS:85117692117
SN - 2051-1426
VL - 9
JO - Journal for ImmunoTherapy of Cancer
JF - Journal for ImmunoTherapy of Cancer
IS - 10
M1 - e002919
ER -