Chromosome replicating timing combined with fluorescent In situ hybridization

Leslie Smith, Mathew (Matt) Thayer

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.

Original languageEnglish (US)
JournalJournal of Visualized Experiments
Issue number70
DOIs
StatePublished - Oct 10 2012

Fingerprint

Chromosomes
Fluorescence In Situ Hybridization
DNA Replication Timing
X Chromosome
X Chromosome Inactivation
DNA Replication
Mammalian Chromosomes
Phenotype
Internal-External Control
Ionizing Radiation
DNA
S Phase
Epigenomics
Cells
Cues
Alleles
Ionizing radiation

Keywords

  • Biochemistry
  • BrdU
  • Cellular biology
  • Chromosome rearrangements
  • Chromosome replication timing
  • Cytogenetics
  • FISH
  • Fluorescence microscopy
  • Fluorescent in situ hybridization
  • Genetics
  • Issue 70
  • Molecular biology

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Chemical Engineering(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)

Cite this

Chromosome replicating timing combined with fluorescent In situ hybridization. / Smith, Leslie; Thayer, Mathew (Matt).

In: Journal of Visualized Experiments, No. 70, 10.10.2012.

Research output: Contribution to journalArticle

@article{30fec06866a745f7b94b8737ad2b7917,
title = "Chromosome replicating timing combined with fluorescent In situ hybridization",
abstract = "Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.",
keywords = "Biochemistry, BrdU, Cellular biology, Chromosome rearrangements, Chromosome replication timing, Cytogenetics, FISH, Fluorescence microscopy, Fluorescent in situ hybridization, Genetics, Issue 70, Molecular biology",
author = "Leslie Smith and Thayer, {Mathew (Matt)}",
year = "2012",
month = "10",
day = "10",
doi = "10.3791/4400",
language = "English (US)",
journal = "Journal of visualized experiments : JoVE",
issn = "1940-087X",
publisher = "MYJoVE Corporation",
number = "70",

}

TY - JOUR

T1 - Chromosome replicating timing combined with fluorescent In situ hybridization

AU - Smith, Leslie

AU - Thayer, Mathew (Matt)

PY - 2012/10/10

Y1 - 2012/10/10

N2 - Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.

AB - Mammalian DNA replication initiates at multiple sites along chromosomes at different times during S phase, following a temporal replication program. The specification of replication timing is thought to be a dynamic process regulated by tissue-specific and developmental cues that are responsive to epigenetic modifications. However, the mechanisms regulating where and when DNA replication initiates along chromosomes remains poorly understood. Homologous chromosomes usually replicate synchronously, however there are notable exceptions to this rule. For example, in female mammalian cells one of the two X chromosomes becomes late replicating through a process known as X inactivation1. Along with this delay in replication timing, estimated to be 2-3 hr, the majority of genes become transcriptionally silenced on one X chromosome. In addition, a discrete cis-acting locus, known as the X inactivation center, regulates this X inactivation process, including the induction of delayed replication timing on the entire inactive X chromosome. In addition, certain chromosome rearrangements found in cancer cells and in cells exposed to ionizing radiation display a significant delay in replication timing of >3 hours that affects the entire chromosome2,3. Recent work from our lab indicates that disruption of discrete cis-acting autosomal loci result in an extremely late replicating phenotype that affects the entire chromosome4. Additional 'chromosome engineering' studies indicate that certain chromosome rearrangements affecting many different chromosomes result in this abnormal replication-timing phenotype, suggesting that all mammalian chromosomes contain discrete cis-acting loci that control proper replication timing of individual chromosomes5. Here, we present a method for the quantitative analysis of chromosome replication timing combined with fluorescent in situ hybridization. This method allows for a direct comparison of replication timing between homologous chromosomes within the same cell, and was adapted from6. In addition, this method allows for the unambiguous identification of chromosomal rearrangements that correlate with changes in replication timing that affect the entire chromosome. This method has advantages over recently developed high throughput micro-array or sequencing protocols that cannot distinguish between homologous alleles present on rearranged and un-rearranged chromosomes. In addition, because the method described here evaluates single cells, it can detect changes in chromosome replication timing on chromosomal rearrangements that are present in only a fraction of the cells in a population.

KW - Biochemistry

KW - BrdU

KW - Cellular biology

KW - Chromosome rearrangements

KW - Chromosome replication timing

KW - Cytogenetics

KW - FISH

KW - Fluorescence microscopy

KW - Fluorescent in situ hybridization

KW - Genetics

KW - Issue 70

KW - Molecular biology

UR - http://www.scopus.com/inward/record.url?scp=84871177806&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84871177806&partnerID=8YFLogxK

U2 - 10.3791/4400

DO - 10.3791/4400

M3 - Article

JO - Journal of visualized experiments : JoVE

JF - Journal of visualized experiments : JoVE

SN - 1940-087X

IS - 70

ER -