Characterization of the role of very late expression factor 1 in baculovirus capsid structure and DNA processing

Adam L. Vanarsdall, Kazuhiro Okano, George F. Rohrmann

Research output: Contribution to journalArticle

85 Scopus citations

Abstract

Very late expression factor 1 (VLF-1) of Autographa californica multiple nucleopolyhedrovirus is a putative tyrosine recombinase and is required for both very late gene expression and budded virus production. In this report, we show that a vlf-1 knockout bacmid was able to synthesize viral DNA at levels similar to that detected for a gp64 knockout bacmid that served as a noninfectious control virus. Additionally, analysis of replicated bacmid DNA by field-inversion gel electrophoresis indicated that VLF-1 is not required for synthesizing high-molecular-weight intermediates that could be resolved into unit-length genomes when cut at a unique restriction site. However, immunoelectron microscopic analysis revealed that in cells transfected with a vlf-1 knockout bacmid, aberrant tubular structures containing the capsid protein vp39 were observed, suggesting that this virus construct was defective in producing mature capsids. In contrast, rescuing the vlf-1 knockout bacmid construct with a copy of VLF-1 that carries a mutation of a highly conserved tyrosine (Y355F) was sufficient to restore the production of nucleocapsids with a normal appearance, but not infectious virus production. Furthermore, the results of a DNase I protection assay indicated that the DNA packaging efficiency of the VLF-1(Y355F) virus construct was similar to that of the gp64 knockout control. Finally, a recombinant virus containing a functional hemagglutinin epitope-tagged version of VLF-1 was constructed to investigate the association of VLF-1 with the nucleocapsid. Analysis by immunoelectron microscopy of Sf-9 cells infected with this virus showed that VLF-1 localized to an end region of the nucleocapsid. Collectively, these results indicate that VLF-1 is required for normal capsid assembly and serves an essential function during the final stages of the DNA packaging process.

Original languageEnglish (US)
Pages (from-to)1724-1733
Number of pages10
JournalJournal of virology
Volume80
Issue number4
DOIs
StatePublished - Feb 1 2006

    Fingerprint

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Cite this