Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons

K. Teshima, S. H. Kim, Charles Allen

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca2+-activated K+ channels. The overall goal of this study was to examine the role of Ca2+-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca2+-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca2+-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca2+-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca2+-activated K+ channels.

Original languageEnglish (US)
Pages (from-to)65-73
Number of pages9
JournalNeuroscience
Volume120
Issue number1
DOIs
StatePublished - Aug 4 2003

Fingerprint

Apamin
Suprachiasmatic Nucleus
Calcium-Activated Potassium Channels
Tubocurarine
Potassium
Neurons
Action Potentials
Membranes
GABA-A Receptor Antagonists
Nystatin
Picrotoxin
Tetraethylammonium

Keywords

  • Action potential
  • Apamin
  • Calcium-activated potassium channel
  • Circadian rhythm
  • Membrane afterhyperpolarization

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons. / Teshima, K.; Kim, S. H.; Allen, Charles.

In: Neuroscience, Vol. 120, No. 1, 04.08.2003, p. 65-73.

Research output: Contribution to journalArticle

@article{61fe1a47ff364f4fa65c1f7610c9fbe1,
title = "Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons",
abstract = "In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca2+-activated K+ channels. The overall goal of this study was to examine the role of Ca2+-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca2+-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca2+-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca2+-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca2+-activated K+ channels.",
keywords = "Action potential, Apamin, Calcium-activated potassium channel, Circadian rhythm, Membrane afterhyperpolarization",
author = "K. Teshima and Kim, {S. H.} and Charles Allen",
year = "2003",
month = "8",
day = "4",
doi = "10.1016/S0306-4522(03)00270-7",
language = "English (US)",
volume = "120",
pages = "65--73",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "1",

}

TY - JOUR

T1 - Characterization of an apamin-sensitive potassium current in suprachiasmatic nucleus neurons

AU - Teshima, K.

AU - Kim, S. H.

AU - Allen, Charles

PY - 2003/8/4

Y1 - 2003/8/4

N2 - In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca2+-activated K+ channels. The overall goal of this study was to examine the role of Ca2+-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca2+-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca2+-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca2+-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca2+-activated K+ channels.

AB - In neurons of the suprachiasmatic nucleus, spike frequency adaptation and membrane afterhyperpolarization occur during a train of action potentials. Extracellular Ca2+ may regulate neuronal excitability by several mechanisms, including activation of small conductance and large conductance Ca2+-activated K+ channels. The overall goal of this study was to examine the role of Ca2+-activated K+ currents in individual suprachiasmatic nucleus neurons. To this end, we used the nystatin-perforated patch technique to record currents from suprachiasmatic nucleus neurons. Iberiotoxin and tetraethylammonium, antagonists of large conductance Ca2+-activated K+ channels, had no effect on the membrane afterhyperpolarization. However, antagonists of small conductance Ca2+-activated K+ channels, apamin and d-tubocurarine, reduced the amplitude of the membrane afterhyperpolarization and inhibited the spike frequency adaptation that occurred during a train of action potentials. Although there was no significant difference in membrane AHP between different portions of the circadian day, apamin and d-tubocurarine increased the spontaneous firing frequency of suprachiasmatic nucleus neurons during the daytime. In voltage-clamp mode, membrane depolarization-activated currents were followed by an outward tail current reversing near the K+ equilibrium potential. The tail current decayed with a time constant of 220 ms at +20 mV and 149 ms at -40 mV. Apamin irreversibly and d-tubocurarine reversibly inhibited the tail current. The tail current amplitude was also reduced by the GABAA receptor antagonist, bicuculline methiodide, while picrotoxin (another GABAA receptor antagonist) was without effect. Removal of extracellular Ca2+ or the addition of Cd2+ reversibly inhibited the tail current. These results indicate that apamin- and d-tubocurarine-sensitive small conductance Ca2+-activated K+ channels have a modulatory function on the action potential firing frequency as well as the membrane afterhyperpolarization that follows a train of action potentials in suprachiasmatic nucleus neurons. Importantly, our data also indicate that a portion of the effects of bicuculline methiodide on suprachiasmatic nucleus neurons may be mediated by inhibition of small conductance Ca2+-activated K+ channels.

KW - Action potential

KW - Apamin

KW - Calcium-activated potassium channel

KW - Circadian rhythm

KW - Membrane afterhyperpolarization

UR - http://www.scopus.com/inward/record.url?scp=0037828634&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037828634&partnerID=8YFLogxK

U2 - 10.1016/S0306-4522(03)00270-7

DO - 10.1016/S0306-4522(03)00270-7

M3 - Article

C2 - 12849741

AN - SCOPUS:0037828634

VL - 120

SP - 65

EP - 73

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 1

ER -