Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation

Sandra Rugonyi, Carley Shaut, Aiping Liu, Kent Thornburg, Ruikang K. Wang

Research output: Contribution to journalArticlepeer-review

78 Scopus citations

Abstract

Optical coherence tomography (OCT) is a non-contact, non-invasive and high-resolution imaging technique, suited to study early cardiovascular development. Alterations in hemodynamic conditions during early development are known to lead to cardiac defects, presumably as a result of changes in cardiac biomechanics produced by the alterations. In this paper, we demonstrate the use of a spectral domain OCT in visualizing and quantifying changes in cardiac wall motion and blood-flow velocities under normal and altered hemodynamic conditions in chicken embryos at an early stage of development (Hamburger-Hamilton stage HH18, ∼3 days of incubation), focusing on the heart outflow tract (OFT). The OCT system employed acquired simultaneously microstructural and blood-flow images at a rate of 92 frames s-1with a spatial resolution of ∼10 νm. OCT imaging allowed in vivo visualization of the OFT microstructures, e.g. the lumen, cardiac cushions and myocardium. We found that alterations in hemodynamic conditions, through OFT banding and vitelline-vein ligation, changed blood-flow velocities through the OFT, as expected. Further, OCT allowed quantification of changes in the dynamics of OFT wall motion. Our results therefore establish the utility of spectral domain OCT to study the influence of hemodynamic conditions on heart development in intact, in vivo chicken embryo models.

Original languageEnglish (US)
Pages (from-to)5077-5091
Number of pages15
JournalPhysics in Medicine and Biology
Volume53
Issue number18
DOIs
StatePublished - Sep 21 2008

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Changes in wall motion and blood flow in the outflow tract of chick embryonic hearts observed with optical coherence tomography after outflow tract banding and vitelline-vein ligation'. Together they form a unique fingerprint.

Cite this