Central vestibular system: Vestibular nuclei and posterior cerebellum

Neal H. Barmack

Research output: Contribution to journalArticle

204 Citations (Scopus)

Abstract

The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and β-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.

Original languageEnglish (US)
Pages (from-to)511-541
Number of pages31
JournalBrain Research Bulletin
Volume60
Issue number5-6
DOIs
StatePublished - Jun 15 2003

Fingerprint

Vestibular Nuclei
Cerebellum
Uvula
Neurons
Otolithic Membrane
Semicircular Canals
Purkinje Cells
Cell Nucleus
Neck

Keywords

  • Climbing fiber response
  • Nodulus
  • Simple spike
  • Vestibular nuclei

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Central vestibular system : Vestibular nuclei and posterior cerebellum. / Barmack, Neal H.

In: Brain Research Bulletin, Vol. 60, No. 5-6, 15.06.2003, p. 511-541.

Research output: Contribution to journalArticle

Barmack, Neal H. / Central vestibular system : Vestibular nuclei and posterior cerebellum. In: Brain Research Bulletin. 2003 ; Vol. 60, No. 5-6. pp. 511-541.
@article{a80e332c23f644eb92023e632708845e,
title = "Central vestibular system: Vestibular nuclei and posterior cerebellum",
abstract = "The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between {"}active{"} and {"}passive{"} movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and β-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.",
keywords = "Climbing fiber response, Nodulus, Simple spike, Vestibular nuclei",
author = "Barmack, {Neal H.}",
year = "2003",
month = "6",
day = "15",
doi = "10.1016/S0361-9230(03)00055-8",
language = "English (US)",
volume = "60",
pages = "511--541",
journal = "Brain Research Bulletin",
issn = "0361-9230",
publisher = "Elsevier Inc.",
number = "5-6",

}

TY - JOUR

T1 - Central vestibular system

T2 - Vestibular nuclei and posterior cerebellum

AU - Barmack, Neal H.

PY - 2003/6/15

Y1 - 2003/6/15

N2 - The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and β-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.

AB - The vestibular nuclei and posterior cerebellum are the destination of vestibular primary afferents and the subject of this review. The vestibular nuclei include four major nuclei (medial, descending, superior and lateral). In addition, smaller vestibular nuclei include: Y-group, parasolitary nucleus, and nucleus intercalatus. Each of the major nuclei can be subdivided further based primarily on cytological and immunohistochemical histological criteria or differences in afferent and/or efferent projections. The primary afferent projections of vestibular end organs are distributed to several ipsilateral vestibular nuclei. Vestibular nuclei communicate bilaterally through a commissural system that is predominantly inhibitory. Secondary vestibular neurons also receive convergent sensory information from optokinetic circuitry, central visual system and neck proprioceptive systems. Secondary vestibular neurons cannot distinguish between sources of afferent activity. However, the discharge of secondary vestibular neurons can distinguish between "active" and "passive" movements. The posterior cerebellum has extensive afferent and efferent connections with vestibular nuclei. Vestibular primary afferents are distributed to the ipsilateral uvula-nodulus as mossy fibers. Vestibular secondary afferents are distributed bilaterally. Climbing fibers to the cerebellum originate from two subnuclei of the contralateral inferior olive; the dorsomedial cell column and β-nucleus. Vestibular climbing fibers carry information only from the vertical semicircular canals and otoliths. They establish a coordinate map, arrayed in sagittal zones on the surface of the uvula-nodulus. Purkinje cells respond to vestibular stimulation with antiphasic modulation of climbing fiber responses (CFRs) and simple spikes (SSs). The modulation of SSs is out of phase with the modulation of vestibular primary afferents. Modulation of SSs persists, even after vestibular primary afferents are destroyed by a unilateral labyrinthectomy, suggesting that an interneuronal network, triggered by CFRs is responsible for SS modulation. The vestibulo-cerebellum, imposes a vestibular coordinate system on postural responses and permits adaptive guidance of movement.

KW - Climbing fiber response

KW - Nodulus

KW - Simple spike

KW - Vestibular nuclei

UR - http://www.scopus.com/inward/record.url?scp=0037764095&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037764095&partnerID=8YFLogxK

U2 - 10.1016/S0361-9230(03)00055-8

DO - 10.1016/S0361-9230(03)00055-8

M3 - Article

C2 - 12787870

AN - SCOPUS:0037764095

VL - 60

SP - 511

EP - 541

JO - Brain Research Bulletin

JF - Brain Research Bulletin

SN - 0361-9230

IS - 5-6

ER -