Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy

PROMMTT Study Group

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

BACKGROUND: Trauma-induced coagulopathy following severe injury is associated with increased bleeding and mortality. Injury may result in alteration of cellular phenotypes and release of cell-derived microparticles (MP). Circulating MPs are procoagulant and support thrombin generation (TG) and clotting. We evaluated MP and TG phenotypes in severely injured patients at admission, in relation to coagulopathy and bleeding.

METHODS: As part of the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study, research blood samples were obtained from 180 trauma patients requiring transfusions at 5 participating centers. Twenty five healthy controls and 40 minimally injured patients were analyzed for comparisons. Laboratory criteria for coagulopathy was activated partial thromboplastin time (APTT) ≥ 35 sec. Samples were analyzed by Calibrated Automated Thrombogram to assess TG, and by flow cytometry for MP phenotypes [platelet (PMP), erythrocyte (RMP), leukocyte (LMP), endothelial (EMP), tissue factor (TFMP), and Annexin V positive (AVMP)].

RESULTS: 21.7% of patients were coagulopathic with the median (IQR) APTT of 44 sec (37, 53), and an Injury Severity Score of 26 (17, 35). Compared to controls, patients had elevated EMP, RMP, LMP, and TFMP (all p<0.001), and enhanced TG (p<0.0001). However, coagulopathic PROMMTT patients had significantly lower PMP, TFMP, and TG, higher substantial bleeding, and higher mortality compared to non-coagulopathic patients (all p<0.001).

CONCLUSIONS: Cellular activation and enhanced TG are predominant after trauma and independent of injury severity. Coagulopathy was associated with lower thrombin peak and rate compared to non-coagulopathic patients, while lower levels of TF-bearing PMPs were associated with substantial bleeding.

Original languageEnglish (US)
Pages (from-to)652-658
Number of pages7
JournalThrombosis Research
Volume134
Issue number3
DOIs
StatePublished - Sep 1 2014
Externally publishedYes

Fingerprint

Thrombin
Phenotype
Wounds and Injuries
Hemorrhage
Partial Thromboplastin Time
Cell-Derived Microparticles
Injury Severity Score
Mortality
Patient Admission
Annexin A5
Thromboplastin
Endothelium
Flow Cytometry
Leukocytes
Blood Platelets
Erythrocytes
Research

Keywords

  • Blood coagulation
  • Cell–derived microparticles
  • Hemorrhage
  • Thrombin
  • Trauma

ASJC Scopus subject areas

  • Hematology

Cite this

@article{29c8aeebd4dc43419ce68fafe5571127,
title = "Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy",
abstract = "BACKGROUND: Trauma-induced coagulopathy following severe injury is associated with increased bleeding and mortality. Injury may result in alteration of cellular phenotypes and release of cell-derived microparticles (MP). Circulating MPs are procoagulant and support thrombin generation (TG) and clotting. We evaluated MP and TG phenotypes in severely injured patients at admission, in relation to coagulopathy and bleeding.METHODS: As part of the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study, research blood samples were obtained from 180 trauma patients requiring transfusions at 5 participating centers. Twenty five healthy controls and 40 minimally injured patients were analyzed for comparisons. Laboratory criteria for coagulopathy was activated partial thromboplastin time (APTT) ≥ 35 sec. Samples were analyzed by Calibrated Automated Thrombogram to assess TG, and by flow cytometry for MP phenotypes [platelet (PMP), erythrocyte (RMP), leukocyte (LMP), endothelial (EMP), tissue factor (TFMP), and Annexin V positive (AVMP)].RESULTS: 21.7{\%} of patients were coagulopathic with the median (IQR) APTT of 44 sec (37, 53), and an Injury Severity Score of 26 (17, 35). Compared to controls, patients had elevated EMP, RMP, LMP, and TFMP (all p<0.001), and enhanced TG (p<0.0001). However, coagulopathic PROMMTT patients had significantly lower PMP, TFMP, and TG, higher substantial bleeding, and higher mortality compared to non-coagulopathic patients (all p<0.001).CONCLUSIONS: Cellular activation and enhanced TG are predominant after trauma and independent of injury severity. Coagulopathy was associated with lower thrombin peak and rate compared to non-coagulopathic patients, while lower levels of TF-bearing PMPs were associated with substantial bleeding.",
keywords = "Blood coagulation, Cell–derived microparticles, Hemorrhage, Thrombin, Trauma",
author = "{PROMMTT Study Group} and Nena Matijevic and Wang, {Yao Wei W.} and Wade, {Charles E.} and Holcomb, {John B.} and Cotton, {Bryan A.} and Martin Schreiber and Peter Muskat and Fox, {Erin E.} and {Del Junco}, {Deborah J.} and Cardenas, {Jessica C.} and Rahbar, {Mohammad H.} and Cohen, {Mitchell Jay}",
year = "2014",
month = "9",
day = "1",
doi = "10.1016/j.thromres.2014.07.023",
language = "English (US)",
volume = "134",
pages = "652--658",
journal = "Thrombosis Research",
issn = "0049-3848",
publisher = "Elsevier Limited",
number = "3",

}

TY - JOUR

T1 - Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study

T2 - correlation with coagulopathy

AU - PROMMTT Study Group

AU - Matijevic, Nena

AU - Wang, Yao Wei W.

AU - Wade, Charles E.

AU - Holcomb, John B.

AU - Cotton, Bryan A.

AU - Schreiber, Martin

AU - Muskat, Peter

AU - Fox, Erin E.

AU - Del Junco, Deborah J.

AU - Cardenas, Jessica C.

AU - Rahbar, Mohammad H.

AU - Cohen, Mitchell Jay

PY - 2014/9/1

Y1 - 2014/9/1

N2 - BACKGROUND: Trauma-induced coagulopathy following severe injury is associated with increased bleeding and mortality. Injury may result in alteration of cellular phenotypes and release of cell-derived microparticles (MP). Circulating MPs are procoagulant and support thrombin generation (TG) and clotting. We evaluated MP and TG phenotypes in severely injured patients at admission, in relation to coagulopathy and bleeding.METHODS: As part of the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study, research blood samples were obtained from 180 trauma patients requiring transfusions at 5 participating centers. Twenty five healthy controls and 40 minimally injured patients were analyzed for comparisons. Laboratory criteria for coagulopathy was activated partial thromboplastin time (APTT) ≥ 35 sec. Samples were analyzed by Calibrated Automated Thrombogram to assess TG, and by flow cytometry for MP phenotypes [platelet (PMP), erythrocyte (RMP), leukocyte (LMP), endothelial (EMP), tissue factor (TFMP), and Annexin V positive (AVMP)].RESULTS: 21.7% of patients were coagulopathic with the median (IQR) APTT of 44 sec (37, 53), and an Injury Severity Score of 26 (17, 35). Compared to controls, patients had elevated EMP, RMP, LMP, and TFMP (all p<0.001), and enhanced TG (p<0.0001). However, coagulopathic PROMMTT patients had significantly lower PMP, TFMP, and TG, higher substantial bleeding, and higher mortality compared to non-coagulopathic patients (all p<0.001).CONCLUSIONS: Cellular activation and enhanced TG are predominant after trauma and independent of injury severity. Coagulopathy was associated with lower thrombin peak and rate compared to non-coagulopathic patients, while lower levels of TF-bearing PMPs were associated with substantial bleeding.

AB - BACKGROUND: Trauma-induced coagulopathy following severe injury is associated with increased bleeding and mortality. Injury may result in alteration of cellular phenotypes and release of cell-derived microparticles (MP). Circulating MPs are procoagulant and support thrombin generation (TG) and clotting. We evaluated MP and TG phenotypes in severely injured patients at admission, in relation to coagulopathy and bleeding.METHODS: As part of the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study, research blood samples were obtained from 180 trauma patients requiring transfusions at 5 participating centers. Twenty five healthy controls and 40 minimally injured patients were analyzed for comparisons. Laboratory criteria for coagulopathy was activated partial thromboplastin time (APTT) ≥ 35 sec. Samples were analyzed by Calibrated Automated Thrombogram to assess TG, and by flow cytometry for MP phenotypes [platelet (PMP), erythrocyte (RMP), leukocyte (LMP), endothelial (EMP), tissue factor (TFMP), and Annexin V positive (AVMP)].RESULTS: 21.7% of patients were coagulopathic with the median (IQR) APTT of 44 sec (37, 53), and an Injury Severity Score of 26 (17, 35). Compared to controls, patients had elevated EMP, RMP, LMP, and TFMP (all p<0.001), and enhanced TG (p<0.0001). However, coagulopathic PROMMTT patients had significantly lower PMP, TFMP, and TG, higher substantial bleeding, and higher mortality compared to non-coagulopathic patients (all p<0.001).CONCLUSIONS: Cellular activation and enhanced TG are predominant after trauma and independent of injury severity. Coagulopathy was associated with lower thrombin peak and rate compared to non-coagulopathic patients, while lower levels of TF-bearing PMPs were associated with substantial bleeding.

KW - Blood coagulation

KW - Cell–derived microparticles

KW - Hemorrhage

KW - Thrombin

KW - Trauma

UR - http://www.scopus.com/inward/record.url?scp=85027924973&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027924973&partnerID=8YFLogxK

U2 - 10.1016/j.thromres.2014.07.023

DO - 10.1016/j.thromres.2014.07.023

M3 - Article

C2 - 25086657

AN - SCOPUS:85027924973

VL - 134

SP - 652

EP - 658

JO - Thrombosis Research

JF - Thrombosis Research

SN - 0049-3848

IS - 3

ER -