Cell-free fetal DNA screening for detection of microdeletion syndromes

a cost-effectiveness analysis*

Carmen M. Avram, Brian Shaffer, Teresa N. Sparks, Allison J. Allen, Aaron Caughey

Research output: Contribution to journalArticle

Abstract

Objective: Fetuses with genetic copy number variants are poorly detected through traditional prenatal screening. Microdeletions and duplications are clearly identified with diagnostic testing through chromosomal microarray, and screening of a select number of microdeletions has become available with cell-free DNA (cfDNA). Our study compares the costs and outcomes of cfDNA for five pathogenic microdeletions and aneuploidy to cfDNA for aneuploidy alone in conjunction with ultrasound. Methods: A decision-analytic model was constructed using TreeAge software to compare cfDNA with microdeletions versus traditional cfDNA in a theoretical cohort of 4,000,000 pregnancies that would also be screened with ultrasound. Probabilities, costs, and utilities were derived from literature. The primary outcomes were the incremental cost per quality-adjusted life-year (QALY), terminations, and procedure-related losses. Because the microdeletion results are available, but not reported, on all cfDNA testing we set the incremental cost of the cfDNA microdeletion screening test to zero at baseline and varied the cost in sensitivity analysis. Results: Screening with cfDNA for microdeletions among all pregnant women would result in 83 fewer anomalous neonates compared to traditional cfDNA with ultrasound. This reduction is due to increased diagnosis and termination of fetuses with microdeletions in this group. Routine use of cfDNA with microdeletions resulted in more procedure-related losses. cfDNA with microdeletions would improve effectiveness by 977 QALYs and decrease costs by $90,991,784. When we varied the specificity of the screening test, we found that it remained cost-effective down to a specificity of 91%. With a threshold of $100,000/QALY, microdeletion screening is cost-effective to an incremental increase in cost over cfDNA for aneuploidy alone of $47.10. Conclusion: For detection of fetal subchromosomal abnormalities, use of cfDNA with microdeletions is a cost-effective strategy compared to cfDNA for aneuploidy alone in conjunction with ultrasound. Cell-free DNA for microdeletions is not currently recommended as routine screening for low-risk obstetric populations by the American College of Obstetrics and Gynecologists or the Society for Maternal–Fetal Medicine. The test characteristics of cfDNA with microdeletions require greater examination before being routinely recommended.

Original languageEnglish (US)
JournalJournal of Maternal-Fetal and Neonatal Medicine
DOIs
StateAccepted/In press - Jan 1 2019

Fingerprint

Cost-Benefit Analysis
DNA
Costs and Cost Analysis
Aneuploidy
Quality-Adjusted Life Years
Obstetrics
Fetus
Prenatal Diagnosis
Pregnant Women
Software
Medicine

Keywords

  • Cell-free DNA
  • cost-effectiveness
  • microdeletions
  • subchromosomal
  • ultrasound

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health
  • Obstetrics and Gynecology

Cite this

Cell-free fetal DNA screening for detection of microdeletion syndromes : a cost-effectiveness analysis*. / Avram, Carmen M.; Shaffer, Brian; Sparks, Teresa N.; Allen, Allison J.; Caughey, Aaron.

In: Journal of Maternal-Fetal and Neonatal Medicine, 01.01.2019.

Research output: Contribution to journalArticle

@article{72283f28b58c47358805d8e527e3c07c,
title = "Cell-free fetal DNA screening for detection of microdeletion syndromes: a cost-effectiveness analysis*",
abstract = "Objective: Fetuses with genetic copy number variants are poorly detected through traditional prenatal screening. Microdeletions and duplications are clearly identified with diagnostic testing through chromosomal microarray, and screening of a select number of microdeletions has become available with cell-free DNA (cfDNA). Our study compares the costs and outcomes of cfDNA for five pathogenic microdeletions and aneuploidy to cfDNA for aneuploidy alone in conjunction with ultrasound. Methods: A decision-analytic model was constructed using TreeAge software to compare cfDNA with microdeletions versus traditional cfDNA in a theoretical cohort of 4,000,000 pregnancies that would also be screened with ultrasound. Probabilities, costs, and utilities were derived from literature. The primary outcomes were the incremental cost per quality-adjusted life-year (QALY), terminations, and procedure-related losses. Because the microdeletion results are available, but not reported, on all cfDNA testing we set the incremental cost of the cfDNA microdeletion screening test to zero at baseline and varied the cost in sensitivity analysis. Results: Screening with cfDNA for microdeletions among all pregnant women would result in 83 fewer anomalous neonates compared to traditional cfDNA with ultrasound. This reduction is due to increased diagnosis and termination of fetuses with microdeletions in this group. Routine use of cfDNA with microdeletions resulted in more procedure-related losses. cfDNA with microdeletions would improve effectiveness by 977 QALYs and decrease costs by $90,991,784. When we varied the specificity of the screening test, we found that it remained cost-effective down to a specificity of 91{\%}. With a threshold of $100,000/QALY, microdeletion screening is cost-effective to an incremental increase in cost over cfDNA for aneuploidy alone of $47.10. Conclusion: For detection of fetal subchromosomal abnormalities, use of cfDNA with microdeletions is a cost-effective strategy compared to cfDNA for aneuploidy alone in conjunction with ultrasound. Cell-free DNA for microdeletions is not currently recommended as routine screening for low-risk obstetric populations by the American College of Obstetrics and Gynecologists or the Society for Maternal–Fetal Medicine. The test characteristics of cfDNA with microdeletions require greater examination before being routinely recommended.",
keywords = "Cell-free DNA, cost-effectiveness, microdeletions, subchromosomal, ultrasound",
author = "Avram, {Carmen M.} and Brian Shaffer and Sparks, {Teresa N.} and Allen, {Allison J.} and Aaron Caughey",
year = "2019",
month = "1",
day = "1",
doi = "10.1080/14767058.2019.1647161",
language = "English (US)",
journal = "Journal of Maternal-Fetal and Neonatal Medicine",
issn = "1476-7058",
publisher = "Informa Healthcare",

}

TY - JOUR

T1 - Cell-free fetal DNA screening for detection of microdeletion syndromes

T2 - a cost-effectiveness analysis*

AU - Avram, Carmen M.

AU - Shaffer, Brian

AU - Sparks, Teresa N.

AU - Allen, Allison J.

AU - Caughey, Aaron

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Objective: Fetuses with genetic copy number variants are poorly detected through traditional prenatal screening. Microdeletions and duplications are clearly identified with diagnostic testing through chromosomal microarray, and screening of a select number of microdeletions has become available with cell-free DNA (cfDNA). Our study compares the costs and outcomes of cfDNA for five pathogenic microdeletions and aneuploidy to cfDNA for aneuploidy alone in conjunction with ultrasound. Methods: A decision-analytic model was constructed using TreeAge software to compare cfDNA with microdeletions versus traditional cfDNA in a theoretical cohort of 4,000,000 pregnancies that would also be screened with ultrasound. Probabilities, costs, and utilities were derived from literature. The primary outcomes were the incremental cost per quality-adjusted life-year (QALY), terminations, and procedure-related losses. Because the microdeletion results are available, but not reported, on all cfDNA testing we set the incremental cost of the cfDNA microdeletion screening test to zero at baseline and varied the cost in sensitivity analysis. Results: Screening with cfDNA for microdeletions among all pregnant women would result in 83 fewer anomalous neonates compared to traditional cfDNA with ultrasound. This reduction is due to increased diagnosis and termination of fetuses with microdeletions in this group. Routine use of cfDNA with microdeletions resulted in more procedure-related losses. cfDNA with microdeletions would improve effectiveness by 977 QALYs and decrease costs by $90,991,784. When we varied the specificity of the screening test, we found that it remained cost-effective down to a specificity of 91%. With a threshold of $100,000/QALY, microdeletion screening is cost-effective to an incremental increase in cost over cfDNA for aneuploidy alone of $47.10. Conclusion: For detection of fetal subchromosomal abnormalities, use of cfDNA with microdeletions is a cost-effective strategy compared to cfDNA for aneuploidy alone in conjunction with ultrasound. Cell-free DNA for microdeletions is not currently recommended as routine screening for low-risk obstetric populations by the American College of Obstetrics and Gynecologists or the Society for Maternal–Fetal Medicine. The test characteristics of cfDNA with microdeletions require greater examination before being routinely recommended.

AB - Objective: Fetuses with genetic copy number variants are poorly detected through traditional prenatal screening. Microdeletions and duplications are clearly identified with diagnostic testing through chromosomal microarray, and screening of a select number of microdeletions has become available with cell-free DNA (cfDNA). Our study compares the costs and outcomes of cfDNA for five pathogenic microdeletions and aneuploidy to cfDNA for aneuploidy alone in conjunction with ultrasound. Methods: A decision-analytic model was constructed using TreeAge software to compare cfDNA with microdeletions versus traditional cfDNA in a theoretical cohort of 4,000,000 pregnancies that would also be screened with ultrasound. Probabilities, costs, and utilities were derived from literature. The primary outcomes were the incremental cost per quality-adjusted life-year (QALY), terminations, and procedure-related losses. Because the microdeletion results are available, but not reported, on all cfDNA testing we set the incremental cost of the cfDNA microdeletion screening test to zero at baseline and varied the cost in sensitivity analysis. Results: Screening with cfDNA for microdeletions among all pregnant women would result in 83 fewer anomalous neonates compared to traditional cfDNA with ultrasound. This reduction is due to increased diagnosis and termination of fetuses with microdeletions in this group. Routine use of cfDNA with microdeletions resulted in more procedure-related losses. cfDNA with microdeletions would improve effectiveness by 977 QALYs and decrease costs by $90,991,784. When we varied the specificity of the screening test, we found that it remained cost-effective down to a specificity of 91%. With a threshold of $100,000/QALY, microdeletion screening is cost-effective to an incremental increase in cost over cfDNA for aneuploidy alone of $47.10. Conclusion: For detection of fetal subchromosomal abnormalities, use of cfDNA with microdeletions is a cost-effective strategy compared to cfDNA for aneuploidy alone in conjunction with ultrasound. Cell-free DNA for microdeletions is not currently recommended as routine screening for low-risk obstetric populations by the American College of Obstetrics and Gynecologists or the Society for Maternal–Fetal Medicine. The test characteristics of cfDNA with microdeletions require greater examination before being routinely recommended.

KW - Cell-free DNA

KW - cost-effectiveness

KW - microdeletions

KW - subchromosomal

KW - ultrasound

UR - http://www.scopus.com/inward/record.url?scp=85070448488&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070448488&partnerID=8YFLogxK

U2 - 10.1080/14767058.2019.1647161

DO - 10.1080/14767058.2019.1647161

M3 - Article

JO - Journal of Maternal-Fetal and Neonatal Medicine

JF - Journal of Maternal-Fetal and Neonatal Medicine

SN - 1476-7058

ER -