Categorizing Sleep in Older Adults with Wireless Activity Monitors Using LSTM Neural Networks

Selda Yildiz, Ryan A. Opel, Jonathan E. Elliott, Jeffrey Kaye, Hung Cao, Miranda M. Lim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Novel approaches are needed to accurately classify and monitor sleep patterns in older adults, particularly those with cognitive impairment and non-normative sleep. Traditional methods ignore underlying sleep architecture in these patient populations, and other modern approaches tend to focus on healthy, normative patient populations. In this paper, we developed a model using a long-short-term memory neural network (LSTM) and trained it on a sample of older, non-normative patients. The 22 nights of data collected were trained on gold-standard polysomnography (PSG) as ground truth and were compared against the clinical standard threshold-based method for sleep detection. The LSTM more than doubled the traditional method's ability to detect clinically-relevant wakefulness during sleep (37.7% vs. 15%) without significantly sacrificing accuracy (67.7% vs. 75%) or precision (90.7% vs. 94%) of sleep classification.

Original languageEnglish (US)
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3368-3372
Number of pages5
ISBN (Electronic)9781538613115
DOIs
StatePublished - Jul 2019
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: Jul 23 2019Jul 27 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period7/23/197/27/19

Keywords

  • Actigraphy
  • Long-short-term memory
  • Neural network
  • Sleep monitoring
  • Wearable device

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Categorizing Sleep in Older Adults with Wireless Activity Monitors Using LSTM Neural Networks'. Together they form a unique fingerprint.

Cite this