TY - JOUR
T1 - Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx
AU - Romano, Christine A.
AU - Zhou, Mowei
AU - Song, Yang
AU - Wysocki, Vicki H.
AU - Dohnalkova, Alice C.
AU - Kovarik, Libor
AU - Paša-Tolić, Ljiljana
AU - Tebo, Bradley M.
N1 - Funding Information:
We thank Jing Yan and Prof. Si Wu for helping with some of the MS experiments. The project was funded by the National Science Foundation CHE-1410688 to B.M.T., the National Institute of Health (NIH R01GM113658) to V.H.W., and an NSF Postdoctoral Research Fellowship in Biology Award ID: DBI-1202859 to CAR. A portion of the research was supported by the Environmental and Molecular Sciences Laboratory (EMSL), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ∼200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.
AB - Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ∼200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.
UR - http://www.scopus.com/inward/record.url?scp=85030310144&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85030310144&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-00896-8
DO - 10.1038/s41467-017-00896-8
M3 - Article
C2 - 28963463
AN - SCOPUS:85030310144
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 746
ER -