Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers

Shefali Chauhan, Chelsey D. Kline, Mary Mayfield, Ninian Blackburn

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 Å (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)-superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm-1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)-CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO 3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site.

Original languageEnglish (US)
Pages (from-to)1069-1080
Number of pages12
JournalBiochemistry
Volume53
Issue number6
DOIs
StatePublished - Feb 18 2014

Fingerprint

Silver
Copper
Metals
X ray absorption
Carbon Monoxide
Ligands
Methionine
Peptide Biosynthesis
X-Rays
Biosynthesis
Electron Spin Resonance Spectroscopy
Fourier Analysis
Catalysis
Histidine
Paramagnetic resonance
Catalyst activity
Fourier transforms
Binding Sites
peptidylglycine monooxygenase
Ions

ASJC Scopus subject areas

  • Biochemistry

Cite this

Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers. / Chauhan, Shefali; Kline, Chelsey D.; Mayfield, Mary; Blackburn, Ninian.

In: Biochemistry, Vol. 53, No. 6, 18.02.2014, p. 1069-1080.

Research output: Contribution to journalArticle

@article{922d87ca88d543a7b51756582348e502,
title = "Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers",
abstract = "Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 {\AA} (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)-superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm-1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)-CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO 3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site.",
author = "Shefali Chauhan and Kline, {Chelsey D.} and Mary Mayfield and Ninian Blackburn",
year = "2014",
month = "2",
day = "18",
doi = "10.1021/bi4015264",
language = "English (US)",
volume = "53",
pages = "1069--1080",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "6",

}

TY - JOUR

T1 - Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers

AU - Chauhan, Shefali

AU - Kline, Chelsey D.

AU - Mayfield, Mary

AU - Blackburn, Ninian

PY - 2014/2/18

Y1 - 2014/2/18

N2 - Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 Å (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)-superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm-1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)-CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO 3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site.

AB - Peptidylglycine monooxygenase (PHM) catalyzes the final step in the biosynthesis of amidated peptides that serve as important signaling molecules in numerous endocrine pathways. The catalytic mechanism has attracted much attention because of a number of unique attributes, including the presence of a pair of uncoupled copper centers separated by 11 Å (termed CuH and CuM), an unusual Cu(I)SMet interaction at the oxygen binding M-site, and the postulated Cu(II)-superoxo intermediate. Understanding the mechanism requires determining the catalytic roles of the individual copper centers and how they change during catalysis, a task made more difficult by the overlapping spectral signals from each copper center in the wild-type (WT) protein. To aid in this effort, we constructed and characterized two PHM variants that bound metal at only one site. The H242A variant bound copper at the H-center, while the H107AH108A double mutant bound copper at the M-center; both mutants were devoid of catalytic activity. Oxidized Cu(II) forms showed electron paramagnetic resonance and extended X-ray absorption fine structure (EXAFS) spectra consistent with their previously determined Cu(II)His3O and Cu(II)His2O2 ligand sets for the H- and M-centers, respectively. Cu(I) forms, on the other hand, showed unique chemistry. The M-center bound two histidines and a methionine at all pHs, while the H-center was two-coordinate at neutral pH but coordinated a new methionine S ligand at low pH. Fourier transform infrared studies confirmed and extended previous assignments of CO binding and showed unambiguously that the 2092 cm-1 absorbing species observed in the WT and many variant forms is an M-site Cu(I)-CO adduct. Silver binding was also investigated. When H107AH108A and M109I (a WT analogue with both sites intact) were incubated with excess AgNO 3, each variant bound a single Ag(I) ion, from which it was inferred that Ag(I) binds selectively at the M-center with little or no affinity for the H-center. EXAFS at the Ag K-edge established a strong degree of similarity between the ligand sets of Cu and Ag bound at the M-center. These studies validate previous spectral assignments and provide new insights into the detailed chemistry of each metal site.

UR - http://www.scopus.com/inward/record.url?scp=84894242713&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84894242713&partnerID=8YFLogxK

U2 - 10.1021/bi4015264

DO - 10.1021/bi4015264

M3 - Article

VL - 53

SP - 1069

EP - 1080

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 6

ER -