Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation

Soren Impey, Timothy Jopson, Carl Pelz, Amanuel Tafessu, Fatema Fareh, Damian Zuloaga, Tessa Marzulla, Lara Kirstie Riparip, Blair Stewart, Susanna Rosi, Mitchell S. Turker, Jacob Raber

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome.

Original languageEnglish (US)
Article number10227
JournalScientific Reports
Issue number1
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation'. Together they form a unique fingerprint.

Cite this