Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D with Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture

Christine M. Swanson, Priya Srikanth, Christine Lee, Steven R. Cummings, Ivo Jans, Jane A. Cauley, Roger Bouillon, Dirk Vanderschueren, Eric Orwoll, Carrie Nielson

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Relationships between 1,25-dihydroxyvitamin D (1,25(OH)2D) and skeletal outcomes are uncertain. We examined the associations of 1,25(OH)2D with bone mineral density (BMD), BMD change, and incident non-vertebral fractures in a cohort of older men and compared them with those of 25-hydroxyvitamin D (25OHD). The study population included 1000 men (aged 74.6 ± 6.2 years) in the Osteoporotic Fractures in Men (MrOS) study, of which 537 men had longitudinal dual-energy X-ray absorptiometry (DXA) data (4.5 years of follow-up). A case-cohort design and Cox proportional hazards models were used to test the association between vitamin D metabolite levels and incident nonvertebral and hip fractures. Linear regression models were used to estimate the association between vitamin D measures and baseline BMD and BMD change. Interactions between 25OHD and 1,25(OH)2D were tested for each outcome. Over an average follow-up of 5.1 years, 432 men experienced incident nonvertebral fractures, including 81 hip fractures. Higher 25OHD was associated with higher baseline BMD, slower BMD loss, and lower hip fracture risk. Conversely, men with higher 1,25(OH)2D had lower baseline BMD. 1,25(OH)2D was not associated with BMD loss or nonvertebral fracture. Compared with higher levels of calcitriol, the risk of hip fracture was higher in men with the lowest 1,25(OH)2D levels (8.70 to 51.60 pg/mL) after adjustment for baseline hip BMD (hazard ratio [HR] = 1.99, 95% confidence interval [CI] 1.19-3.33). Adjustment of 1,25(OH)2D data for 25OHD (and vice versa) had little effect on the associations observed but did attenuate the hip fracture association of both vitamin D metabolites. In older men, higher 1,25(OH)2D was associated with lower baseline BMD but was not related to the rate of bone loss or nonvertebral fracture risk. However, with BMD adjustment, a protective association for hip fracture was found with higher 1,25(OH)2D. The associations of 25OHD with skeletal outcomes were generally stronger than those for 1,25(OH)2D. These results do not support the hypothesis that measures of 1,25(OH)2D improve the ability to predict adverse skeletal outcomes when 25OHD measures are available.

Original languageEnglish (US)
Pages (from-to)1403-1413
Number of pages11
JournalJournal of Bone and Mineral Research
Volume30
Issue number8
DOIs
StatePublished - Aug 1 2015

Fingerprint

Bone Density
Hip Fractures
Vitamin D
Linear Models
25-hydroxyvitamin D
1,25-dihydroxyvitamin D
Pelvic Bones
Bone and Bones
Osteoporotic Fractures
Calcitriol
Photon Absorptiometry
Proportional Hazards Models
Confidence Intervals

Keywords

  • 1,25-DIHYDROXYVITAMIN D
  • 25-HYDROXYVITAMIN D
  • BONE MINERAL DENSITY (BMD)
  • CALCITRIOL
  • FRACTURE

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine
  • Endocrinology, Diabetes and Metabolism

Cite this

Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D with Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. / Swanson, Christine M.; Srikanth, Priya; Lee, Christine; Cummings, Steven R.; Jans, Ivo; Cauley, Jane A.; Bouillon, Roger; Vanderschueren, Dirk; Orwoll, Eric; Nielson, Carrie.

In: Journal of Bone and Mineral Research, Vol. 30, No. 8, 01.08.2015, p. 1403-1413.

Research output: Contribution to journalArticle

Swanson, Christine M. ; Srikanth, Priya ; Lee, Christine ; Cummings, Steven R. ; Jans, Ivo ; Cauley, Jane A. ; Bouillon, Roger ; Vanderschueren, Dirk ; Orwoll, Eric ; Nielson, Carrie. / Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D with Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture. In: Journal of Bone and Mineral Research. 2015 ; Vol. 30, No. 8. pp. 1403-1413.
@article{57cecda66a654301bd8568f80a81ab5c,
title = "Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D with Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture",
abstract = "Relationships between 1,25-dihydroxyvitamin D (1,25(OH)2D) and skeletal outcomes are uncertain. We examined the associations of 1,25(OH)2D with bone mineral density (BMD), BMD change, and incident non-vertebral fractures in a cohort of older men and compared them with those of 25-hydroxyvitamin D (25OHD). The study population included 1000 men (aged 74.6 ± 6.2 years) in the Osteoporotic Fractures in Men (MrOS) study, of which 537 men had longitudinal dual-energy X-ray absorptiometry (DXA) data (4.5 years of follow-up). A case-cohort design and Cox proportional hazards models were used to test the association between vitamin D metabolite levels and incident nonvertebral and hip fractures. Linear regression models were used to estimate the association between vitamin D measures and baseline BMD and BMD change. Interactions between 25OHD and 1,25(OH)2D were tested for each outcome. Over an average follow-up of 5.1 years, 432 men experienced incident nonvertebral fractures, including 81 hip fractures. Higher 25OHD was associated with higher baseline BMD, slower BMD loss, and lower hip fracture risk. Conversely, men with higher 1,25(OH)2D had lower baseline BMD. 1,25(OH)2D was not associated with BMD loss or nonvertebral fracture. Compared with higher levels of calcitriol, the risk of hip fracture was higher in men with the lowest 1,25(OH)2D levels (8.70 to 51.60 pg/mL) after adjustment for baseline hip BMD (hazard ratio [HR] = 1.99, 95{\%} confidence interval [CI] 1.19-3.33). Adjustment of 1,25(OH)2D data for 25OHD (and vice versa) had little effect on the associations observed but did attenuate the hip fracture association of both vitamin D metabolites. In older men, higher 1,25(OH)2D was associated with lower baseline BMD but was not related to the rate of bone loss or nonvertebral fracture risk. However, with BMD adjustment, a protective association for hip fracture was found with higher 1,25(OH)2D. The associations of 25OHD with skeletal outcomes were generally stronger than those for 1,25(OH)2D. These results do not support the hypothesis that measures of 1,25(OH)2D improve the ability to predict adverse skeletal outcomes when 25OHD measures are available.",
keywords = "1,25-DIHYDROXYVITAMIN D, 25-HYDROXYVITAMIN D, BONE MINERAL DENSITY (BMD), CALCITRIOL, FRACTURE",
author = "Swanson, {Christine M.} and Priya Srikanth and Christine Lee and Cummings, {Steven R.} and Ivo Jans and Cauley, {Jane A.} and Roger Bouillon and Dirk Vanderschueren and Eric Orwoll and Carrie Nielson",
year = "2015",
month = "8",
day = "1",
doi = "10.1002/jbmr.2487",
language = "English (US)",
volume = "30",
pages = "1403--1413",
journal = "Journal of Bone and Mineral Research",
issn = "0884-0431",
publisher = "Wiley-Blackwell",
number = "8",

}

TY - JOUR

T1 - Associations of 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D with Bone Mineral Density, Bone Mineral Density Change, and Incident Nonvertebral Fracture

AU - Swanson, Christine M.

AU - Srikanth, Priya

AU - Lee, Christine

AU - Cummings, Steven R.

AU - Jans, Ivo

AU - Cauley, Jane A.

AU - Bouillon, Roger

AU - Vanderschueren, Dirk

AU - Orwoll, Eric

AU - Nielson, Carrie

PY - 2015/8/1

Y1 - 2015/8/1

N2 - Relationships between 1,25-dihydroxyvitamin D (1,25(OH)2D) and skeletal outcomes are uncertain. We examined the associations of 1,25(OH)2D with bone mineral density (BMD), BMD change, and incident non-vertebral fractures in a cohort of older men and compared them with those of 25-hydroxyvitamin D (25OHD). The study population included 1000 men (aged 74.6 ± 6.2 years) in the Osteoporotic Fractures in Men (MrOS) study, of which 537 men had longitudinal dual-energy X-ray absorptiometry (DXA) data (4.5 years of follow-up). A case-cohort design and Cox proportional hazards models were used to test the association between vitamin D metabolite levels and incident nonvertebral and hip fractures. Linear regression models were used to estimate the association between vitamin D measures and baseline BMD and BMD change. Interactions between 25OHD and 1,25(OH)2D were tested for each outcome. Over an average follow-up of 5.1 years, 432 men experienced incident nonvertebral fractures, including 81 hip fractures. Higher 25OHD was associated with higher baseline BMD, slower BMD loss, and lower hip fracture risk. Conversely, men with higher 1,25(OH)2D had lower baseline BMD. 1,25(OH)2D was not associated with BMD loss or nonvertebral fracture. Compared with higher levels of calcitriol, the risk of hip fracture was higher in men with the lowest 1,25(OH)2D levels (8.70 to 51.60 pg/mL) after adjustment for baseline hip BMD (hazard ratio [HR] = 1.99, 95% confidence interval [CI] 1.19-3.33). Adjustment of 1,25(OH)2D data for 25OHD (and vice versa) had little effect on the associations observed but did attenuate the hip fracture association of both vitamin D metabolites. In older men, higher 1,25(OH)2D was associated with lower baseline BMD but was not related to the rate of bone loss or nonvertebral fracture risk. However, with BMD adjustment, a protective association for hip fracture was found with higher 1,25(OH)2D. The associations of 25OHD with skeletal outcomes were generally stronger than those for 1,25(OH)2D. These results do not support the hypothesis that measures of 1,25(OH)2D improve the ability to predict adverse skeletal outcomes when 25OHD measures are available.

AB - Relationships between 1,25-dihydroxyvitamin D (1,25(OH)2D) and skeletal outcomes are uncertain. We examined the associations of 1,25(OH)2D with bone mineral density (BMD), BMD change, and incident non-vertebral fractures in a cohort of older men and compared them with those of 25-hydroxyvitamin D (25OHD). The study population included 1000 men (aged 74.6 ± 6.2 years) in the Osteoporotic Fractures in Men (MrOS) study, of which 537 men had longitudinal dual-energy X-ray absorptiometry (DXA) data (4.5 years of follow-up). A case-cohort design and Cox proportional hazards models were used to test the association between vitamin D metabolite levels and incident nonvertebral and hip fractures. Linear regression models were used to estimate the association between vitamin D measures and baseline BMD and BMD change. Interactions between 25OHD and 1,25(OH)2D were tested for each outcome. Over an average follow-up of 5.1 years, 432 men experienced incident nonvertebral fractures, including 81 hip fractures. Higher 25OHD was associated with higher baseline BMD, slower BMD loss, and lower hip fracture risk. Conversely, men with higher 1,25(OH)2D had lower baseline BMD. 1,25(OH)2D was not associated with BMD loss or nonvertebral fracture. Compared with higher levels of calcitriol, the risk of hip fracture was higher in men with the lowest 1,25(OH)2D levels (8.70 to 51.60 pg/mL) after adjustment for baseline hip BMD (hazard ratio [HR] = 1.99, 95% confidence interval [CI] 1.19-3.33). Adjustment of 1,25(OH)2D data for 25OHD (and vice versa) had little effect on the associations observed but did attenuate the hip fracture association of both vitamin D metabolites. In older men, higher 1,25(OH)2D was associated with lower baseline BMD but was not related to the rate of bone loss or nonvertebral fracture risk. However, with BMD adjustment, a protective association for hip fracture was found with higher 1,25(OH)2D. The associations of 25OHD with skeletal outcomes were generally stronger than those for 1,25(OH)2D. These results do not support the hypothesis that measures of 1,25(OH)2D improve the ability to predict adverse skeletal outcomes when 25OHD measures are available.

KW - 1,25-DIHYDROXYVITAMIN D

KW - 25-HYDROXYVITAMIN D

KW - BONE MINERAL DENSITY (BMD)

KW - CALCITRIOL

KW - FRACTURE

UR - http://www.scopus.com/inward/record.url?scp=84937163488&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84937163488&partnerID=8YFLogxK

U2 - 10.1002/jbmr.2487

DO - 10.1002/jbmr.2487

M3 - Article

C2 - 25707402

AN - SCOPUS:84937163488

VL - 30

SP - 1403

EP - 1413

JO - Journal of Bone and Mineral Research

JF - Journal of Bone and Mineral Research

SN - 0884-0431

IS - 8

ER -