Angiogenic and Immunologic Proteins Identified by Deep Proteomic Profiling of Human Retinal and Choroidal Vascular Endothelial Cells: Potential Targets for New Biologic Drugs

Justine R. Smith, Larry L. David, Binoy Appukuttan, Phillip A. Wilmarth

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Purpose: Diseases that involve retinal or choroidal vascular endothelial cells are leading causes of vision loss: age-related macular degeneration, retinal ischemic vasculopathies, and noninfectious posterior uveitis. Proteins differentially expressed by these endothelial cell populations are potential drug targets. We used deep proteomic profiling to define the molecular phenotype of human retinal and choroidal endothelial cells at the protein level. Methods: Retinal and choroidal vascular endothelial cells were separately isolated from 5 human eye pairs by selection on CD31. Total protein was extracted and digested, and peptide fractions were analyzed by reverse-phase liquid chromatography tandem mass spectrometry. Peptide sequences were assigned to fragment ion spectra, and proteins were inferred from openly accessible protein databases. Protein abundance was determined by spectral counting. Publicly available software packages were used to identify proteins that were differentially expressed between human retinal and choroidal endothelial cells, and to classify proteins that were highly abundant in each endothelial cell population. Results: Human retinal and/or choroidal vascular endothelial cells expressed 5042 nonredundant proteins. Setting the differential expression false discovery rate at 0.05, 498 proteins of 3454 quantifiable proteins (14.4%) with minimum mean spectral counts of 2.5 were differentially abundant in the 2 cell populations. Retinal and choroidal endothelial cells were enriched in angiogenic proteins, and retinal endothelial cells were also enriched in immunologic proteins. Conclusions: This work describes the different protein expression profiles of human retinal and choroidal vascular endothelial cells, and provides multiple candidates for further study as novel treatments or drug targets for posterior eye diseases. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.

Original languageEnglish (US)
Pages (from-to)197-229
Number of pages33
JournalAmerican journal of ophthalmology
Volume193
DOIs
StatePublished - Sep 2018

ASJC Scopus subject areas

  • Ophthalmology

Fingerprint

Dive into the research topics of 'Angiogenic and Immunologic Proteins Identified by Deep Proteomic Profiling of Human Retinal and Choroidal Vascular Endothelial Cells: Potential Targets for New Biologic Drugs'. Together they form a unique fingerprint.

Cite this