Analysis of in situ manganese(II) oxidation in the Columbia River and offshore plume: Linking Aurantimonas and the associated microbial community to an active biogeochemical cycle

C. R. Anderson, R. E. Davis, N. S. Bandolin, Antonio Baptista, Bradley Tebo

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary, where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast, it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient-rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)-oxidizing eluates were analysed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi-copper oxidase (MCO) and haem-peroxidase enzymes were identified in active fractions. T-RFLP profiles and cluster analysis indicates that organisms and bacterial communities capable of oxidizing Mn(II) can be sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell-1 day-1. Evidence for the presence of Mn(II)-oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus and Shewanella was found in T-RFLP profiles. Specific Q-PCR probes were designed to target potential homologues of the Aurantimonas manganese oxidizing peroxidase (Mop). By comparing total Mop homologues, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies, it appears that Aurantimonas can only account for ∼1.7% of the peroxidase genes quantified. Under the broad assumption that at least some of the peroxidase homologues quantified are involved in manganese oxidation, it is possible that other organisms oxidize manganese via peroxidases.

Original languageEnglish (US)
Pages (from-to)1561-1576
Number of pages16
JournalEnvironmental Microbiology
Volume13
Issue number6
DOIs
StatePublished - Jun 2011

Fingerprint

manganese peroxidase
Columbia River
biogeochemical cycle
Manganese
Rivers
Estuaries
biogeochemical cycles
manganese
microbial communities
microbial community
peroxidase
plume
oxidation
Peroxidase
Food
Particulate Matter
river
Restriction Fragment Length Polymorphisms
estuaries
nutrient

ASJC Scopus subject areas

  • Microbiology
  • Ecology, Evolution, Behavior and Systematics

Cite this

@article{051c7830e00445b8b624787ac8f37a88,
title = "Analysis of in situ manganese(II) oxidation in the Columbia River and offshore plume: Linking Aurantimonas and the associated microbial community to an active biogeochemical cycle",
abstract = "The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary, where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast, it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient-rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)-oxidizing eluates were analysed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi-copper oxidase (MCO) and haem-peroxidase enzymes were identified in active fractions. T-RFLP profiles and cluster analysis indicates that organisms and bacterial communities capable of oxidizing Mn(II) can be sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell-1 day-1. Evidence for the presence of Mn(II)-oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus and Shewanella was found in T-RFLP profiles. Specific Q-PCR probes were designed to target potential homologues of the Aurantimonas manganese oxidizing peroxidase (Mop). By comparing total Mop homologues, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies, it appears that Aurantimonas can only account for ∼1.7{\%} of the peroxidase genes quantified. Under the broad assumption that at least some of the peroxidase homologues quantified are involved in manganese oxidation, it is possible that other organisms oxidize manganese via peroxidases.",
author = "Anderson, {C. R.} and Davis, {R. E.} and Bandolin, {N. S.} and Antonio Baptista and Bradley Tebo",
year = "2011",
month = "6",
doi = "10.1111/j.1462-2920.2011.02462.x",
language = "English (US)",
volume = "13",
pages = "1561--1576",
journal = "Environmental Microbiology",
issn = "1462-2912",
publisher = "Wiley-Blackwell",
number = "6",

}

TY - JOUR

T1 - Analysis of in situ manganese(II) oxidation in the Columbia River and offshore plume

T2 - Linking Aurantimonas and the associated microbial community to an active biogeochemical cycle

AU - Anderson, C. R.

AU - Davis, R. E.

AU - Bandolin, N. S.

AU - Baptista, Antonio

AU - Tebo, Bradley

PY - 2011/6

Y1 - 2011/6

N2 - The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary, where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast, it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient-rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)-oxidizing eluates were analysed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi-copper oxidase (MCO) and haem-peroxidase enzymes were identified in active fractions. T-RFLP profiles and cluster analysis indicates that organisms and bacterial communities capable of oxidizing Mn(II) can be sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell-1 day-1. Evidence for the presence of Mn(II)-oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus and Shewanella was found in T-RFLP profiles. Specific Q-PCR probes were designed to target potential homologues of the Aurantimonas manganese oxidizing peroxidase (Mop). By comparing total Mop homologues, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies, it appears that Aurantimonas can only account for ∼1.7% of the peroxidase genes quantified. Under the broad assumption that at least some of the peroxidase homologues quantified are involved in manganese oxidation, it is possible that other organisms oxidize manganese via peroxidases.

AB - The Columbia River is a major source of dissolved nutrients and trace metals for the west coast of North America. A large proportion of these nutrients are sourced from the Columbia River Estuary, where coastal and terrestrial waters mix and resuspend particulate matter within the water column. As estuarine water is discharged off the coast, it transports the particulate matter, dissolved nutrients and microorganisms forming nutrient-rich and metabolically dynamic plumes. In this study, bacterial manganese oxidation within the plume and estuary was investigated during spring and neap tides. The microbial community proteome was fractionated and assayed for Mn oxidation activity. Proteins from the outer membrane and the loosely bound outer membrane fractions were separated using size exclusion chromatography and Mn(II)-oxidizing eluates were analysed with tandem mass spectrometry to identify potential Mn oxidase protein targets. Multi-copper oxidase (MCO) and haem-peroxidase enzymes were identified in active fractions. T-RFLP profiles and cluster analysis indicates that organisms and bacterial communities capable of oxidizing Mn(II) can be sourced from the Columbia River estuary and nearshore coastal ocean. These organisms are producing up to 10 fM MnO2 cell-1 day-1. Evidence for the presence of Mn(II)-oxidizing bacterial isolates from the genera Aurantimonas, Rhodobacter, Bacillus and Shewanella was found in T-RFLP profiles. Specific Q-PCR probes were designed to target potential homologues of the Aurantimonas manganese oxidizing peroxidase (Mop). By comparing total Mop homologues, Aurantimonas SSU rRNA and total bacterial SSU rRNA gene copies, it appears that Aurantimonas can only account for ∼1.7% of the peroxidase genes quantified. Under the broad assumption that at least some of the peroxidase homologues quantified are involved in manganese oxidation, it is possible that other organisms oxidize manganese via peroxidases.

UR - http://www.scopus.com/inward/record.url?scp=79958018424&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=79958018424&partnerID=8YFLogxK

U2 - 10.1111/j.1462-2920.2011.02462.x

DO - 10.1111/j.1462-2920.2011.02462.x

M3 - Article

C2 - 21418498

AN - SCOPUS:79958018424

VL - 13

SP - 1561

EP - 1576

JO - Environmental Microbiology

JF - Environmental Microbiology

SN - 1462-2912

IS - 6

ER -