Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: Potential application of gene therapy to endometrial cancer

Lois Ramondetta, Gordon Mills, Thomas W. Burke, Judith K. Wolf

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Papillary serous endometrial carcinoma is an aggressive tumor characterized by late-stage presentation, i.p. spread, and poor prognosis. It is histologically similar to serous papillary carcinoma of the ovary. Preclinical studies have shown that adenovirus-mediated expression of p53 in ovarian cancer cell lines causes growth inhibition and apoptosis in vitro and in vivo. Such studies provide the rationale for Phase I Adp53 gene therapy clinical trials in ovarian cancer. In the present study, we compared the efficacy of adenoviral vectors containing p53 (Adp53) or p21 (Adp21) in a papillary serous endometrial tumor cell line (SPEC-2) that contains mutated p53. Growth assays revealed that both Adp53 and Adp21 were efficacious in decreasing cell proliferation as assessed by anchorage-dependent and anchorage-independent growth assays. However, as compared with Adp53, the effects of Adp21 tended to be more transient and less marked. Strikingly, Adp21, but not Adp53, induced a G1 arrest in SPEC-2 endometrial adenocarcinoma cells. In contrast, as assessed by induction of hypodiploid peaks, free DNA ends detected by a terminal deoxynucleotidyl transferase- based assay, and annexin V positivity, p53 was more effective than p21 in inducing cell death by apoptosis. Compatible with the more efficient induction of apoptosis, Adp53, but not Adp21, induced a marked increase in expression of the preapoptotic molecule BAX without a concomitant change in expression of the antiapoptotic mediator Bcl-2. The differential effects of Adp53 and Adp21 on cell cycle progression and apoptosis may be related to the reversibility of p21-induced cell cycle arrest and the irreversibility of p53-induced apoptosis. Thus, at least in the papillary serous endometrial carcinoma cell line SPEC-2, Adp53 may be more effective than Adp21 as a gene therapeutic. Nevertheless, these preclinical studies suggest that papillary serous endometrial carcinoma is a potential target for p53-or p21-mediated gene therapy.

Original languageEnglish (US)
Pages (from-to)278-284
Number of pages7
JournalClinical Cancer Research
Volume6
Issue number1
StatePublished - Jan 1 2000
Externally publishedYes

Fingerprint

Endometrial Neoplasms
Adenoviridae
Genetic Therapy
Cell Death
Apoptosis
Cell Line
Growth
Ovarian Neoplasms
DNA Nucleotidylexotransferase
Papillary Carcinoma
Annexin A5
Cell Cycle Checkpoints
Tumor Cell Line
Ovary
Cell Cycle
Adenocarcinoma
Cell Proliferation
Clinical Trials
DNA
Genes

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

@article{a9f652ba6e614ba1a6ec846bb1bf4434,
title = "Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death: Potential application of gene therapy to endometrial cancer",
abstract = "Papillary serous endometrial carcinoma is an aggressive tumor characterized by late-stage presentation, i.p. spread, and poor prognosis. It is histologically similar to serous papillary carcinoma of the ovary. Preclinical studies have shown that adenovirus-mediated expression of p53 in ovarian cancer cell lines causes growth inhibition and apoptosis in vitro and in vivo. Such studies provide the rationale for Phase I Adp53 gene therapy clinical trials in ovarian cancer. In the present study, we compared the efficacy of adenoviral vectors containing p53 (Adp53) or p21 (Adp21) in a papillary serous endometrial tumor cell line (SPEC-2) that contains mutated p53. Growth assays revealed that both Adp53 and Adp21 were efficacious in decreasing cell proliferation as assessed by anchorage-dependent and anchorage-independent growth assays. However, as compared with Adp53, the effects of Adp21 tended to be more transient and less marked. Strikingly, Adp21, but not Adp53, induced a G1 arrest in SPEC-2 endometrial adenocarcinoma cells. In contrast, as assessed by induction of hypodiploid peaks, free DNA ends detected by a terminal deoxynucleotidyl transferase- based assay, and annexin V positivity, p53 was more effective than p21 in inducing cell death by apoptosis. Compatible with the more efficient induction of apoptosis, Adp53, but not Adp21, induced a marked increase in expression of the preapoptotic molecule BAX without a concomitant change in expression of the antiapoptotic mediator Bcl-2. The differential effects of Adp53 and Adp21 on cell cycle progression and apoptosis may be related to the reversibility of p21-induced cell cycle arrest and the irreversibility of p53-induced apoptosis. Thus, at least in the papillary serous endometrial carcinoma cell line SPEC-2, Adp53 may be more effective than Adp21 as a gene therapeutic. Nevertheless, these preclinical studies suggest that papillary serous endometrial carcinoma is a potential target for p53-or p21-mediated gene therapy.",
author = "Lois Ramondetta and Gordon Mills and Burke, {Thomas W.} and Wolf, {Judith K.}",
year = "2000",
month = "1",
day = "1",
language = "English (US)",
volume = "6",
pages = "278--284",
journal = "Clinical Cancer Research",
issn = "1078-0432",
publisher = "American Association for Cancer Research Inc.",
number = "1",

}

TY - JOUR

T1 - Adenovirus-mediated expression of p53 or p21 in a papillary serous endometrial carcinoma cell line (SPEC-2) results in both growth inhibition and apoptotic cell death

T2 - Potential application of gene therapy to endometrial cancer

AU - Ramondetta, Lois

AU - Mills, Gordon

AU - Burke, Thomas W.

AU - Wolf, Judith K.

PY - 2000/1/1

Y1 - 2000/1/1

N2 - Papillary serous endometrial carcinoma is an aggressive tumor characterized by late-stage presentation, i.p. spread, and poor prognosis. It is histologically similar to serous papillary carcinoma of the ovary. Preclinical studies have shown that adenovirus-mediated expression of p53 in ovarian cancer cell lines causes growth inhibition and apoptosis in vitro and in vivo. Such studies provide the rationale for Phase I Adp53 gene therapy clinical trials in ovarian cancer. In the present study, we compared the efficacy of adenoviral vectors containing p53 (Adp53) or p21 (Adp21) in a papillary serous endometrial tumor cell line (SPEC-2) that contains mutated p53. Growth assays revealed that both Adp53 and Adp21 were efficacious in decreasing cell proliferation as assessed by anchorage-dependent and anchorage-independent growth assays. However, as compared with Adp53, the effects of Adp21 tended to be more transient and less marked. Strikingly, Adp21, but not Adp53, induced a G1 arrest in SPEC-2 endometrial adenocarcinoma cells. In contrast, as assessed by induction of hypodiploid peaks, free DNA ends detected by a terminal deoxynucleotidyl transferase- based assay, and annexin V positivity, p53 was more effective than p21 in inducing cell death by apoptosis. Compatible with the more efficient induction of apoptosis, Adp53, but not Adp21, induced a marked increase in expression of the preapoptotic molecule BAX without a concomitant change in expression of the antiapoptotic mediator Bcl-2. The differential effects of Adp53 and Adp21 on cell cycle progression and apoptosis may be related to the reversibility of p21-induced cell cycle arrest and the irreversibility of p53-induced apoptosis. Thus, at least in the papillary serous endometrial carcinoma cell line SPEC-2, Adp53 may be more effective than Adp21 as a gene therapeutic. Nevertheless, these preclinical studies suggest that papillary serous endometrial carcinoma is a potential target for p53-or p21-mediated gene therapy.

AB - Papillary serous endometrial carcinoma is an aggressive tumor characterized by late-stage presentation, i.p. spread, and poor prognosis. It is histologically similar to serous papillary carcinoma of the ovary. Preclinical studies have shown that adenovirus-mediated expression of p53 in ovarian cancer cell lines causes growth inhibition and apoptosis in vitro and in vivo. Such studies provide the rationale for Phase I Adp53 gene therapy clinical trials in ovarian cancer. In the present study, we compared the efficacy of adenoviral vectors containing p53 (Adp53) or p21 (Adp21) in a papillary serous endometrial tumor cell line (SPEC-2) that contains mutated p53. Growth assays revealed that both Adp53 and Adp21 were efficacious in decreasing cell proliferation as assessed by anchorage-dependent and anchorage-independent growth assays. However, as compared with Adp53, the effects of Adp21 tended to be more transient and less marked. Strikingly, Adp21, but not Adp53, induced a G1 arrest in SPEC-2 endometrial adenocarcinoma cells. In contrast, as assessed by induction of hypodiploid peaks, free DNA ends detected by a terminal deoxynucleotidyl transferase- based assay, and annexin V positivity, p53 was more effective than p21 in inducing cell death by apoptosis. Compatible with the more efficient induction of apoptosis, Adp53, but not Adp21, induced a marked increase in expression of the preapoptotic molecule BAX without a concomitant change in expression of the antiapoptotic mediator Bcl-2. The differential effects of Adp53 and Adp21 on cell cycle progression and apoptosis may be related to the reversibility of p21-induced cell cycle arrest and the irreversibility of p53-induced apoptosis. Thus, at least in the papillary serous endometrial carcinoma cell line SPEC-2, Adp53 may be more effective than Adp21 as a gene therapeutic. Nevertheless, these preclinical studies suggest that papillary serous endometrial carcinoma is a potential target for p53-or p21-mediated gene therapy.

UR - http://www.scopus.com/inward/record.url?scp=0033978816&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033978816&partnerID=8YFLogxK

M3 - Article

C2 - 10656459

AN - SCOPUS:0033978816

VL - 6

SP - 278

EP - 284

JO - Clinical Cancer Research

JF - Clinical Cancer Research

SN - 1078-0432

IS - 1

ER -