Adapting parcellation schemes to study fetal brain connectivity in serial imaging studies

Xi Cheng, Jakob Wilm, Sharmishtaa Seshamani, Mads Fogtmann, Christopher Kroenke, Colin Studholme

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Scopus citations

Abstract

A crucial step in studying brain connectivity is the definition of the Regions Of Interest (ROI's) which are considered as nodes of a network graph. These ROI's identified in structural imaging reflect consistent functional regions in the anatomies being compared. However in serial studies of the developing fetal brain such functional and associated structural markers are not consistently present over time. In this study we adapt two non-atlas based parcellation schemes to study the development of connectivity networks of a fetal monkey brain using Diffusion Weighted Imaging techniques. Results demonstrate that the fetal brain network exhibits small-world characteristics and a pattern of increased cluster coefficients and decreased global efficiency. These findings may provide a route to creating a new biomarker for healthy fetal brain development.

Original languageEnglish (US)
Title of host publication2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Pages73-76
Number of pages4
DOIs
StatePublished - 2013
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Adapting parcellation schemes to study fetal brain connectivity in serial imaging studies'. Together they form a unique fingerprint.

Cite this