Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

Oana I. Craciunescu, Paul R. Stauffer, Brian J. Soher, Cory R. Wyatt, Omar Arabe, Paolo MacCarini, Shiva K. Das, Kung Shan Cheng, Terence Z. Wong, Ellen L. Jones, Mark W. Dewhirst, Zeljko Vujaskovic, James R. MacFall

Research output: Contribution to journalArticlepeer-review

56 Scopus citations

Abstract

Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a #15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 °C for the entire heating time and 0.85 °C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 °C and during the period of steady state was 0.62 °C. Conclusions: The data show that for evaluable treatments, excellent correlation (Δ T <1 °C) of MRTI-ROI and invasive measurements can be achieved, but that motion and other artifacts are still serious challenges that must be overcome in future work.

Original languageEnglish (US)
Pages (from-to)4848-4858
Number of pages11
JournalMedical Physics
Volume36
Issue number11
DOIs
StatePublished - 2009
Externally publishedYes

Keywords

  • Noninvasive temperature measurement
  • Proton resonance frequency shift method
  • Soft tissue sarcoma

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas'. Together they form a unique fingerprint.

Cite this