Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson's disease

J. V. Jacobs, Fay Horak

Research output: Contribution to journalArticle

110 Citations (Scopus)

Abstract

Subjects with Parkinson's disease exhibit abnormally short compensatory steps in response to external postural perturbations. We examined whether: (1) Parkinson's disease subjects exhibit short compensatory steps due to abnormal central proprioceptive-motor integration, (2) this proprioceptive-motor deficit can be overcome by visual-motor neural circuits using visual targets, (3) the proprioceptive-motor deficit relates to the severity of Parkinson's disease, and (4) the dysfunction of central dopaminergic circuits contributes to the Parkinson's disease subjects' proprioceptive-motor deficit. Ten Parkinson's disease subjects and 10 matched control subjects performed compensatory steps in response to backward surface translations in five conditions: with eyes closed, with eyes open, to a remembered visual target, to a target without seeing their legs, and to a target while seeing their legs. Parkinson's disease subjects were separated into a moderate group and a severe group based on scores from the Unified Parkinson's Disease Rating Scale and were tested off and on their dopamine medication. Parkinson's disease subjects exhibited shorter compensatory steps than did the control subjects, but all subjects increased their step length when stepping to targets. Compared with the other subject groups, the severe Parkinson's disease subjects made larger accuracy errors when stepping to targets, and the severe Parkinson's disease subjects' step accuracy worsened the most when they were unable to see their legs. Thus, Parkinson's disease subjects exhibited short compensatory steps due to abnormal proprioceptive-motor integration and used visual input to take longer compensatory steps when a target was provided. In severe Parkinson's disease subjects, however, visual input does not fully compensate because, even with a target and unobstructed vision, they still exhibited poor step accuracy. Medication did not consistently improve the length and accuracy of the Parkinson's disease subjects' compensatory steps, suggesting that degeneration of dopamine circuits within the basal ganglia is not responsible for the proprioceptive-motor deficit that degrades compensatory steps in Parkinson's disease subjects.

Original languageEnglish (US)
Pages (from-to)999-1009
Number of pages11
JournalNeuroscience
Volume141
Issue number2
DOIs
StatePublished - 2006

Fingerprint

Parkinson Disease
Leg
Dopamine
Basal Ganglia

Keywords

  • balance
  • kinesthesia
  • posture
  • proprioception
  • vision

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson's disease. / Jacobs, J. V.; Horak, Fay.

In: Neuroscience, Vol. 141, No. 2, 2006, p. 999-1009.

Research output: Contribution to journalArticle

@article{3a119a54cfaa4f76b079cfc5cb7ac4b8,
title = "Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson's disease",
abstract = "Subjects with Parkinson's disease exhibit abnormally short compensatory steps in response to external postural perturbations. We examined whether: (1) Parkinson's disease subjects exhibit short compensatory steps due to abnormal central proprioceptive-motor integration, (2) this proprioceptive-motor deficit can be overcome by visual-motor neural circuits using visual targets, (3) the proprioceptive-motor deficit relates to the severity of Parkinson's disease, and (4) the dysfunction of central dopaminergic circuits contributes to the Parkinson's disease subjects' proprioceptive-motor deficit. Ten Parkinson's disease subjects and 10 matched control subjects performed compensatory steps in response to backward surface translations in five conditions: with eyes closed, with eyes open, to a remembered visual target, to a target without seeing their legs, and to a target while seeing their legs. Parkinson's disease subjects were separated into a moderate group and a severe group based on scores from the Unified Parkinson's Disease Rating Scale and were tested off and on their dopamine medication. Parkinson's disease subjects exhibited shorter compensatory steps than did the control subjects, but all subjects increased their step length when stepping to targets. Compared with the other subject groups, the severe Parkinson's disease subjects made larger accuracy errors when stepping to targets, and the severe Parkinson's disease subjects' step accuracy worsened the most when they were unable to see their legs. Thus, Parkinson's disease subjects exhibited short compensatory steps due to abnormal proprioceptive-motor integration and used visual input to take longer compensatory steps when a target was provided. In severe Parkinson's disease subjects, however, visual input does not fully compensate because, even with a target and unobstructed vision, they still exhibited poor step accuracy. Medication did not consistently improve the length and accuracy of the Parkinson's disease subjects' compensatory steps, suggesting that degeneration of dopamine circuits within the basal ganglia is not responsible for the proprioceptive-motor deficit that degrades compensatory steps in Parkinson's disease subjects.",
keywords = "balance, kinesthesia, posture, proprioception, vision",
author = "Jacobs, {J. V.} and Fay Horak",
year = "2006",
doi = "10.1016/j.neuroscience.2006.04.014",
language = "English (US)",
volume = "141",
pages = "999--1009",
journal = "Neuroscience",
issn = "0306-4522",
publisher = "Elsevier Limited",
number = "2",

}

TY - JOUR

T1 - Abnormal proprioceptive-motor integration contributes to hypometric postural responses of subjects with parkinson's disease

AU - Jacobs, J. V.

AU - Horak, Fay

PY - 2006

Y1 - 2006

N2 - Subjects with Parkinson's disease exhibit abnormally short compensatory steps in response to external postural perturbations. We examined whether: (1) Parkinson's disease subjects exhibit short compensatory steps due to abnormal central proprioceptive-motor integration, (2) this proprioceptive-motor deficit can be overcome by visual-motor neural circuits using visual targets, (3) the proprioceptive-motor deficit relates to the severity of Parkinson's disease, and (4) the dysfunction of central dopaminergic circuits contributes to the Parkinson's disease subjects' proprioceptive-motor deficit. Ten Parkinson's disease subjects and 10 matched control subjects performed compensatory steps in response to backward surface translations in five conditions: with eyes closed, with eyes open, to a remembered visual target, to a target without seeing their legs, and to a target while seeing their legs. Parkinson's disease subjects were separated into a moderate group and a severe group based on scores from the Unified Parkinson's Disease Rating Scale and were tested off and on their dopamine medication. Parkinson's disease subjects exhibited shorter compensatory steps than did the control subjects, but all subjects increased their step length when stepping to targets. Compared with the other subject groups, the severe Parkinson's disease subjects made larger accuracy errors when stepping to targets, and the severe Parkinson's disease subjects' step accuracy worsened the most when they were unable to see their legs. Thus, Parkinson's disease subjects exhibited short compensatory steps due to abnormal proprioceptive-motor integration and used visual input to take longer compensatory steps when a target was provided. In severe Parkinson's disease subjects, however, visual input does not fully compensate because, even with a target and unobstructed vision, they still exhibited poor step accuracy. Medication did not consistently improve the length and accuracy of the Parkinson's disease subjects' compensatory steps, suggesting that degeneration of dopamine circuits within the basal ganglia is not responsible for the proprioceptive-motor deficit that degrades compensatory steps in Parkinson's disease subjects.

AB - Subjects with Parkinson's disease exhibit abnormally short compensatory steps in response to external postural perturbations. We examined whether: (1) Parkinson's disease subjects exhibit short compensatory steps due to abnormal central proprioceptive-motor integration, (2) this proprioceptive-motor deficit can be overcome by visual-motor neural circuits using visual targets, (3) the proprioceptive-motor deficit relates to the severity of Parkinson's disease, and (4) the dysfunction of central dopaminergic circuits contributes to the Parkinson's disease subjects' proprioceptive-motor deficit. Ten Parkinson's disease subjects and 10 matched control subjects performed compensatory steps in response to backward surface translations in five conditions: with eyes closed, with eyes open, to a remembered visual target, to a target without seeing their legs, and to a target while seeing their legs. Parkinson's disease subjects were separated into a moderate group and a severe group based on scores from the Unified Parkinson's Disease Rating Scale and were tested off and on their dopamine medication. Parkinson's disease subjects exhibited shorter compensatory steps than did the control subjects, but all subjects increased their step length when stepping to targets. Compared with the other subject groups, the severe Parkinson's disease subjects made larger accuracy errors when stepping to targets, and the severe Parkinson's disease subjects' step accuracy worsened the most when they were unable to see their legs. Thus, Parkinson's disease subjects exhibited short compensatory steps due to abnormal proprioceptive-motor integration and used visual input to take longer compensatory steps when a target was provided. In severe Parkinson's disease subjects, however, visual input does not fully compensate because, even with a target and unobstructed vision, they still exhibited poor step accuracy. Medication did not consistently improve the length and accuracy of the Parkinson's disease subjects' compensatory steps, suggesting that degeneration of dopamine circuits within the basal ganglia is not responsible for the proprioceptive-motor deficit that degrades compensatory steps in Parkinson's disease subjects.

KW - balance

KW - kinesthesia

KW - posture

KW - proprioception

KW - vision

UR - http://www.scopus.com/inward/record.url?scp=33745988223&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745988223&partnerID=8YFLogxK

U2 - 10.1016/j.neuroscience.2006.04.014

DO - 10.1016/j.neuroscience.2006.04.014

M3 - Article

C2 - 16713110

AN - SCOPUS:33745988223

VL - 141

SP - 999

EP - 1009

JO - Neuroscience

JF - Neuroscience

SN - 0306-4522

IS - 2

ER -