A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

Brooke L. Deatherage Kaiser, Jie Li, James A. Sanford, Young Mo Kim, Scott R. Kronewitter, Marcus B. Jones, Christine T. Peterson, Scott N. Peterson, Bryan C. Frank, Samuel O. Purvine, Joseph N. Brown, Thomas O. Metz, Richard D. Smith, Fred Heffron, Joshua N. Adkins

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

The potential for commensal microorganisms indigenous to a host (the 'microbiome' or 'microbiota') to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics "systems" approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alteration of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium's lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.

Original languageEnglish (US)
Article numbere67155
JournalPloS one
Volume8
Issue number6
DOIs
StatePublished - Jun 26 2013
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection'. Together they form a unique fingerprint.

Cite this