TY - JOUR
T1 - A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation
AU - James, P. L.
AU - Jones, S. B.
AU - Busby, W. H.
AU - Clemmons, D. R.
AU - Rotwein, P.
PY - 1993
Y1 - 1993
N2 - Insulin-like growth factor-binding proteins (IGFBPs) are a family of secreted proteins that bind insulin-like growth factors I and II (IGFs I and II) and are capable of modulating IGF actions on target cells. We have shown previously that C2 myoblasts secrete a single ~29-kDa IGFBP during their terminal differentiation (Tollefsen, S. E., Lajara, R., McCusker, R. H., Clemmons, D. R., and Rotwein, P. (1989) J. Biol. Chem. 264, 13810-13817). In this study, we have purified the protein from C2 cell-conditioned media by conventional and IGF-affinity chromatography, cloned its cDNA by PCR-based and traditional library screening, and identified it as mouse IGFBP-5. The resultant 5561 nucleotide cDNA encodes a 252-amino acid mature protein (predicted M(r) ~28,400) that is 97% identical to rat and human IGFBP-5. In differentiating C2 myoblasts and in F3 azamyoblasts the >6-kilobase IGFBP-5 mRNA accumulates concomitantly with induction of myogenin mRNA, an early marker of muscle differentiation. Ligand blot analysis shows that IGFBP-5 protein is secreted within 12 h of the onset of differentiation in these cells and that it is the only IGFBP produced in several fusing skeletal muscle cell lines. In vivo, IGFBP-5 transcripts are expressed in a variety of mouse tissues including striated muscle, but, unlike other IGFBPs, it is barely detectable in liver. IGFBP-5 is more conserved than other IGFBPs in mammals; its conserved structure and sequence also extends to non-mammalian vertebrates. Hybridization of a mouse BP5 coding region probe to RNA from several chicken and Xenopus tissues demonstrated similarly sized transcripts in these species. A partial Xenopus cDNA is identical in 38/45 deduced amino acids to the mammalian proteins. Identification of an IGF-binding protein that is produced during myoblast differentiation provides a model system in which to study the potential modulatory role of IGFBPs in development.
AB - Insulin-like growth factor-binding proteins (IGFBPs) are a family of secreted proteins that bind insulin-like growth factors I and II (IGFs I and II) and are capable of modulating IGF actions on target cells. We have shown previously that C2 myoblasts secrete a single ~29-kDa IGFBP during their terminal differentiation (Tollefsen, S. E., Lajara, R., McCusker, R. H., Clemmons, D. R., and Rotwein, P. (1989) J. Biol. Chem. 264, 13810-13817). In this study, we have purified the protein from C2 cell-conditioned media by conventional and IGF-affinity chromatography, cloned its cDNA by PCR-based and traditional library screening, and identified it as mouse IGFBP-5. The resultant 5561 nucleotide cDNA encodes a 252-amino acid mature protein (predicted M(r) ~28,400) that is 97% identical to rat and human IGFBP-5. In differentiating C2 myoblasts and in F3 azamyoblasts the >6-kilobase IGFBP-5 mRNA accumulates concomitantly with induction of myogenin mRNA, an early marker of muscle differentiation. Ligand blot analysis shows that IGFBP-5 protein is secreted within 12 h of the onset of differentiation in these cells and that it is the only IGFBP produced in several fusing skeletal muscle cell lines. In vivo, IGFBP-5 transcripts are expressed in a variety of mouse tissues including striated muscle, but, unlike other IGFBPs, it is barely detectable in liver. IGFBP-5 is more conserved than other IGFBPs in mammals; its conserved structure and sequence also extends to non-mammalian vertebrates. Hybridization of a mouse BP5 coding region probe to RNA from several chicken and Xenopus tissues demonstrated similarly sized transcripts in these species. A partial Xenopus cDNA is identical in 38/45 deduced amino acids to the mammalian proteins. Identification of an IGF-binding protein that is produced during myoblast differentiation provides a model system in which to study the potential modulatory role of IGFBPs in development.
UR - http://www.scopus.com/inward/record.url?scp=0027518204&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027518204&partnerID=8YFLogxK
M3 - Article
C2 - 7693664
AN - SCOPUS:0027518204
SN - 0021-9258
VL - 268
SP - 22305
EP - 22312
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 30
ER -