TY - JOUR
T1 - A composite Ets/Pit-1 binding site in the prolactin gene can mediate transcriptional responses to multiple signal transduction pathways
AU - Howard, P. W.
AU - Maurer, R. A.
PY - 1995
Y1 - 1995
N2 - Binding sites for the tissue-specific transcription factor, Pit-1, are required for basal and hormonally induced prolactin gene transcription. Although Pit-1 is phosphorylated in response to several signaling pathways, the mechanism by which Pit-1 contributes to hormonal induction of gene transcription has not been defined. Recent reports suggest that phosphorylation of Pit-1 may not be required for hormonal regulation of the prolactin promoter. Analysis of the contribution of individual Pit-1 binding sites has been complicated due to the fact that some of the elements appear to be redundant. To better understand the role of Pit-1 sites in mediating hormonal regulation of the prolactin gene, we have performed enhancer tests using the three most proximal Pit-1 binding sites of the rat prolactin gene which are designated the 1P, 2P, and 3P sites. The results demonstrate that multimers of the 3P Pit-1 binding site are much more responsive to several hormonal and intracellular signaling pathways than multimers of the 1P or 2P sites. The 3P DNA element was found to contain a consensus binding site for the Ets family of proteins. Mutation of the Ets binding site greatly decreased the ability of epidermal growth factor, phorbol esters, Ras, or the Raf kinase to induce reporter gene activity. Mutation of the Ets site had little effect on basal enhancer activity. In contrast, mutation of the consensus Pit-1 binding site in the 3P element essentially abolished all basal enhancer activity. Overexpression of Ets-1 in GH3 pituitary cells enhanced both basal and Ras induced activity from the 3P enhancer. These data describe a composite element in the prolactin gene containing binding sites for two different factors and the studies suggest a mechanism by which Ets proteins and Pit-1 functionally cooperate to permit transcriptional regulation by different signaling pathways.
AB - Binding sites for the tissue-specific transcription factor, Pit-1, are required for basal and hormonally induced prolactin gene transcription. Although Pit-1 is phosphorylated in response to several signaling pathways, the mechanism by which Pit-1 contributes to hormonal induction of gene transcription has not been defined. Recent reports suggest that phosphorylation of Pit-1 may not be required for hormonal regulation of the prolactin promoter. Analysis of the contribution of individual Pit-1 binding sites has been complicated due to the fact that some of the elements appear to be redundant. To better understand the role of Pit-1 sites in mediating hormonal regulation of the prolactin gene, we have performed enhancer tests using the three most proximal Pit-1 binding sites of the rat prolactin gene which are designated the 1P, 2P, and 3P sites. The results demonstrate that multimers of the 3P Pit-1 binding site are much more responsive to several hormonal and intracellular signaling pathways than multimers of the 1P or 2P sites. The 3P DNA element was found to contain a consensus binding site for the Ets family of proteins. Mutation of the Ets binding site greatly decreased the ability of epidermal growth factor, phorbol esters, Ras, or the Raf kinase to induce reporter gene activity. Mutation of the Ets site had little effect on basal enhancer activity. In contrast, mutation of the consensus Pit-1 binding site in the 3P element essentially abolished all basal enhancer activity. Overexpression of Ets-1 in GH3 pituitary cells enhanced both basal and Ras induced activity from the 3P enhancer. These data describe a composite element in the prolactin gene containing binding sites for two different factors and the studies suggest a mechanism by which Ets proteins and Pit-1 functionally cooperate to permit transcriptional regulation by different signaling pathways.
UR - http://www.scopus.com/inward/record.url?scp=0029151923&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029151923&partnerID=8YFLogxK
U2 - 10.1074/jbc.270.36.20930
DO - 10.1074/jbc.270.36.20930
M3 - Article
C2 - 7673116
AN - SCOPUS:0029151923
SN - 0021-9258
VL - 270
SP - 20930
EP - 20936
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 36
ER -