A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest: A translational model in large swine

Ed B.G. Barnard, James E. Manning, Jason E. Smith, Jason M. Rall, Jennifer M. Cox, James Ross

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Background: Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA). Noncompressible torso hemorrhage (NCTH) is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) at the thoracic aorta (Zone 1) can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP) combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC) when cardiac arrest has occurred. Methods and findings: Male Yorkshire Landrace cross swine (80.0 ± 6.0 kg) underwent anesthesia, instrumentation for monitoring, and splenectomy. TCA was induced by laparoscopic liver lobe resection combined with arterial catheter blood withdrawal to achieve a sustained systolic blood pressure <10 mmHg, cardiac arrest. After 3 min of arrest, swine were allocated to one of three interventions: (1) REBOA plus 4 units of IV fresh whole blood (FWB), (2) SAAP with oxygenated lactated Ringer’s (LR), 1,600 mL/2 min, or (3) SAAP with oxygenated FWB 1,600 mL/2 min. Primary endpoint was survival to the end of 60 min of resuscitation, a simulated prehospital phase. Thirty animals were allocated to 3 groups (10 per group)—5 protocol exclusions resulted in a total of 35 animals being used. Baseline measurements and time to cardiac arrest were not different amongst groups. ROSC was achieved in 0/10 (0%, 95% CI 0.00–30.9) REBOA, 6/10 (60%, 95% CI 26.2–87.8) SAAP-LR and 10/10 (100%, 95% CI 69.2–100.0) SAAP-FWB animals, p < 0.001. Survival to end of simulated 60-minute prehospital resuscitation was 0/10 (0%, 95% CI 0.00–30.9) for REBOA, 1/10 (10%, 95% CI 0.25–44.5) for SAAP-LR and 9/10 (90%, 95% CI 55.5–99.7) for SAAP-FWB, p < 0.001. Total FWB infusion volume was similar for REBOA (2,452 ± 0 mL) and SAAP-FWB (2,250 ± 594 mL). This study was undertaken in laboratory conditions, and as such may have practical limitations when applied clinically. Cardiac arrest in this study was defined by intra-aortic pressure monitoring that is not feasible in clinical practice, and as such limits the generalizability of findings. Clinical trials are needed to determine if the beneficial effects of SAAP-FWB observed in this laboratory study will translate into improved survival in clinical practice. Conclusions: SAAP conferred a superior short-term survival over REBOA in this large animal model of hemorrhage-induced traumatic cardiac arrest with NCTH. SAAP using an oxygen-carrying perfusate was more effective in this study than non-oxygen carrying solutions in TCA. SAAP can effect ROSC from hemorrhage-induced electrocardiographic asystole in large swine.

Original languageEnglish (US)
Article numbere1002349
JournalPLoS Medicine
Volume14
Issue number7
DOIs
StatePublished - Jul 1 2017

Fingerprint

Balloon Occlusion
Induced Heart Arrest
Balloons
Arches
Thoracic Aorta
Aorta
Swine
Perfusion
Hemorrhage
Blood
Heart Arrest
Resuscitation
Animals
Torso
Blood Pressure
Monitoring
Catheters
Blood pressure
Splenectomy
Liver

ASJC Scopus subject areas

  • Biotechnology
  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this

A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest : A translational model in large swine. / Barnard, Ed B.G.; Manning, James E.; Smith, Jason E.; Rall, Jason M.; Cox, Jennifer M.; Ross, James.

In: PLoS Medicine, Vol. 14, No. 7, e1002349, 01.07.2017.

Research output: Contribution to journalArticle

@article{a69e512f4e224cfb995461ba01c7e627,
title = "A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest: A translational model in large swine",
abstract = "Background: Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA). Noncompressible torso hemorrhage (NCTH) is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) at the thoracic aorta (Zone 1) can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP) combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC) when cardiac arrest has occurred. Methods and findings: Male Yorkshire Landrace cross swine (80.0 ± 6.0 kg) underwent anesthesia, instrumentation for monitoring, and splenectomy. TCA was induced by laparoscopic liver lobe resection combined with arterial catheter blood withdrawal to achieve a sustained systolic blood pressure <10 mmHg, cardiac arrest. After 3 min of arrest, swine were allocated to one of three interventions: (1) REBOA plus 4 units of IV fresh whole blood (FWB), (2) SAAP with oxygenated lactated Ringer’s (LR), 1,600 mL/2 min, or (3) SAAP with oxygenated FWB 1,600 mL/2 min. Primary endpoint was survival to the end of 60 min of resuscitation, a simulated prehospital phase. Thirty animals were allocated to 3 groups (10 per group)—5 protocol exclusions resulted in a total of 35 animals being used. Baseline measurements and time to cardiac arrest were not different amongst groups. ROSC was achieved in 0/10 (0{\%}, 95{\%} CI 0.00–30.9) REBOA, 6/10 (60{\%}, 95{\%} CI 26.2–87.8) SAAP-LR and 10/10 (100{\%}, 95{\%} CI 69.2–100.0) SAAP-FWB animals, p < 0.001. Survival to end of simulated 60-minute prehospital resuscitation was 0/10 (0{\%}, 95{\%} CI 0.00–30.9) for REBOA, 1/10 (10{\%}, 95{\%} CI 0.25–44.5) for SAAP-LR and 9/10 (90{\%}, 95{\%} CI 55.5–99.7) for SAAP-FWB, p < 0.001. Total FWB infusion volume was similar for REBOA (2,452 ± 0 mL) and SAAP-FWB (2,250 ± 594 mL). This study was undertaken in laboratory conditions, and as such may have practical limitations when applied clinically. Cardiac arrest in this study was defined by intra-aortic pressure monitoring that is not feasible in clinical practice, and as such limits the generalizability of findings. Clinical trials are needed to determine if the beneficial effects of SAAP-FWB observed in this laboratory study will translate into improved survival in clinical practice. Conclusions: SAAP conferred a superior short-term survival over REBOA in this large animal model of hemorrhage-induced traumatic cardiac arrest with NCTH. SAAP using an oxygen-carrying perfusate was more effective in this study than non-oxygen carrying solutions in TCA. SAAP can effect ROSC from hemorrhage-induced electrocardiographic asystole in large swine.",
author = "Barnard, {Ed B.G.} and Manning, {James E.} and Smith, {Jason E.} and Rall, {Jason M.} and Cox, {Jennifer M.} and James Ross",
year = "2017",
month = "7",
day = "1",
doi = "10.1371/journal.pmed.1002349",
language = "English (US)",
volume = "14",
journal = "PLoS Medicine",
issn = "1549-1277",
publisher = "Nature Publishing Group",
number = "7",

}

TY - JOUR

T1 - A comparison of Selective Aortic Arch Perfusion and Resuscitative Endovascular Balloon Occlusion of the Aorta for the management of hemorrhage-induced traumatic cardiac arrest

T2 - A translational model in large swine

AU - Barnard, Ed B.G.

AU - Manning, James E.

AU - Smith, Jason E.

AU - Rall, Jason M.

AU - Cox, Jennifer M.

AU - Ross, James

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Background: Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA). Noncompressible torso hemorrhage (NCTH) is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) at the thoracic aorta (Zone 1) can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP) combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC) when cardiac arrest has occurred. Methods and findings: Male Yorkshire Landrace cross swine (80.0 ± 6.0 kg) underwent anesthesia, instrumentation for monitoring, and splenectomy. TCA was induced by laparoscopic liver lobe resection combined with arterial catheter blood withdrawal to achieve a sustained systolic blood pressure <10 mmHg, cardiac arrest. After 3 min of arrest, swine were allocated to one of three interventions: (1) REBOA plus 4 units of IV fresh whole blood (FWB), (2) SAAP with oxygenated lactated Ringer’s (LR), 1,600 mL/2 min, or (3) SAAP with oxygenated FWB 1,600 mL/2 min. Primary endpoint was survival to the end of 60 min of resuscitation, a simulated prehospital phase. Thirty animals were allocated to 3 groups (10 per group)—5 protocol exclusions resulted in a total of 35 animals being used. Baseline measurements and time to cardiac arrest were not different amongst groups. ROSC was achieved in 0/10 (0%, 95% CI 0.00–30.9) REBOA, 6/10 (60%, 95% CI 26.2–87.8) SAAP-LR and 10/10 (100%, 95% CI 69.2–100.0) SAAP-FWB animals, p < 0.001. Survival to end of simulated 60-minute prehospital resuscitation was 0/10 (0%, 95% CI 0.00–30.9) for REBOA, 1/10 (10%, 95% CI 0.25–44.5) for SAAP-LR and 9/10 (90%, 95% CI 55.5–99.7) for SAAP-FWB, p < 0.001. Total FWB infusion volume was similar for REBOA (2,452 ± 0 mL) and SAAP-FWB (2,250 ± 594 mL). This study was undertaken in laboratory conditions, and as such may have practical limitations when applied clinically. Cardiac arrest in this study was defined by intra-aortic pressure monitoring that is not feasible in clinical practice, and as such limits the generalizability of findings. Clinical trials are needed to determine if the beneficial effects of SAAP-FWB observed in this laboratory study will translate into improved survival in clinical practice. Conclusions: SAAP conferred a superior short-term survival over REBOA in this large animal model of hemorrhage-induced traumatic cardiac arrest with NCTH. SAAP using an oxygen-carrying perfusate was more effective in this study than non-oxygen carrying solutions in TCA. SAAP can effect ROSC from hemorrhage-induced electrocardiographic asystole in large swine.

AB - Background: Survival rates remain low after hemorrhage-induced traumatic cardiac arrest (TCA). Noncompressible torso hemorrhage (NCTH) is a major cause of potentially survivable trauma death. Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) at the thoracic aorta (Zone 1) can limit subdiaphragmatic blood loss and allow for IV fluid resuscitation when intrinsic cardiac activity is still present. Selective Aortic Arch Perfusion (SAAP) combines thoracic aortic balloon hemorrhage control with intra-aortic oxygenated perfusion to achieve return of spontaneous circulation (ROSC) when cardiac arrest has occurred. Methods and findings: Male Yorkshire Landrace cross swine (80.0 ± 6.0 kg) underwent anesthesia, instrumentation for monitoring, and splenectomy. TCA was induced by laparoscopic liver lobe resection combined with arterial catheter blood withdrawal to achieve a sustained systolic blood pressure <10 mmHg, cardiac arrest. After 3 min of arrest, swine were allocated to one of three interventions: (1) REBOA plus 4 units of IV fresh whole blood (FWB), (2) SAAP with oxygenated lactated Ringer’s (LR), 1,600 mL/2 min, or (3) SAAP with oxygenated FWB 1,600 mL/2 min. Primary endpoint was survival to the end of 60 min of resuscitation, a simulated prehospital phase. Thirty animals were allocated to 3 groups (10 per group)—5 protocol exclusions resulted in a total of 35 animals being used. Baseline measurements and time to cardiac arrest were not different amongst groups. ROSC was achieved in 0/10 (0%, 95% CI 0.00–30.9) REBOA, 6/10 (60%, 95% CI 26.2–87.8) SAAP-LR and 10/10 (100%, 95% CI 69.2–100.0) SAAP-FWB animals, p < 0.001. Survival to end of simulated 60-minute prehospital resuscitation was 0/10 (0%, 95% CI 0.00–30.9) for REBOA, 1/10 (10%, 95% CI 0.25–44.5) for SAAP-LR and 9/10 (90%, 95% CI 55.5–99.7) for SAAP-FWB, p < 0.001. Total FWB infusion volume was similar for REBOA (2,452 ± 0 mL) and SAAP-FWB (2,250 ± 594 mL). This study was undertaken in laboratory conditions, and as such may have practical limitations when applied clinically. Cardiac arrest in this study was defined by intra-aortic pressure monitoring that is not feasible in clinical practice, and as such limits the generalizability of findings. Clinical trials are needed to determine if the beneficial effects of SAAP-FWB observed in this laboratory study will translate into improved survival in clinical practice. Conclusions: SAAP conferred a superior short-term survival over REBOA in this large animal model of hemorrhage-induced traumatic cardiac arrest with NCTH. SAAP using an oxygen-carrying perfusate was more effective in this study than non-oxygen carrying solutions in TCA. SAAP can effect ROSC from hemorrhage-induced electrocardiographic asystole in large swine.

UR - http://www.scopus.com/inward/record.url?scp=85026631292&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85026631292&partnerID=8YFLogxK

U2 - 10.1371/journal.pmed.1002349

DO - 10.1371/journal.pmed.1002349

M3 - Article

C2 - 28742797

AN - SCOPUS:85026631292

VL - 14

JO - PLoS Medicine

JF - PLoS Medicine

SN - 1549-1277

IS - 7

M1 - e1002349

ER -