A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia

Ting Lei Gu, Thomas Mercher, Jeffrey W. Tyner, Valerie L. Goss, Denise K. Walters, Melanie G. Cornejo, Cynthia Reeves, Lana Popova, Kimberly Lee, Michael C. Heinrich, John Rush, Masanori Daibata, Isao Miyoshi, D. Gary Gilliland, Brian J. Druker, Roberto D. Polakiewicz

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Activated tyrosine kinases have been frequently implicated in the pathogenesis of cancer, including acute myeloid leukemia (AML), and are validated targets for therapeutic intervention with small-molecule kinase inhibitors. To identify novel activated tyrosine kinases in AML, we used a discovery platform consisting of immunoaffinity profiling coupled to mass spectrometry that identifies large numbers of tyrosine-phosphorylated proteins, including active kinases. This method revealed the presence of an activated colony-stimulating factor 1 receptor (CSF1R) kinase in the acute megakaryoblastic leukemia (AMKL) cell line MKPL-1. Further studies using siRNA and a small-molecule inhibitor showed that CSF1R is essential for the growth and survival of MKPL-1 cells. DNA sequence analysis of cDNA generated by 5′RACE from CSF1R coding sequences identified a novel fusion of the RNA binding motif 6 (RBM6) gene to CSF1R gene generated presumably by a t(3;5)(p21;q33) translocation. Expression of the RBM6-CSF1R fusion protein conferred interleukin-3 (IL-3)-independent growth in BaF3 cells, and induces a myeloid proliferative disease (MPD) with features of megakaryoblastic leukemia in a murine transplant model. These findings identify a novel potential therapeutic target in leukemogenesis, and demonstrate the utility of phosphoproteomic strategies for discovery of tyrosine kinase alleles.

Original languageEnglish (US)
Pages (from-to)323-333
Number of pages11
JournalBlood
Volume110
Issue number1
DOIs
StatePublished - Jul 1 2007

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

Fingerprint

Dive into the research topics of 'A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia'. Together they form a unique fingerprint.

Cite this